IPGRI’s vision...

“Through the collective, concerted action of farmers, forest dwellers, pastoralists, scientists, development workers and political leaders, the full potential of the Earth’s plant genetic diversity will be harnessed to eradicate poverty, achieve food security and protect the environment for the benefit of present and future generations.”

…and how we approach it

IPGRI's modus operandi is based firmly on working with others, leveraging our funds and abilities so that we not only achieve results, but also help to build capacity in those we work with and for. So strong and plentiful are these links, however, that to list them all in every case would make for a very long and dry document. In the following stories some of our partners have been mentioned by name while others have not, but we would like to take this opportunity to thank them all. IPGRI depends on partnerships and partners to get the job done. We also acknowledge the support of all our donors, especially those that contribute unrestricted funds.
The year was dominated by the World Summit on Sustainable Development (WSSD), held in September in Johannesburg, South Africa. Also billed as Rio Plus 10, the Summit sought to obtain real commitments to meeting the Millennium Development Goals that were set at a conference in New York in September 2000. World leaders agreed there to halve the number of people affected by poverty and those who have no access to clean water by the year 2015.

Agricultural research will play a key role in meeting both goals, and IPGRI was proud to have been asked by the Future Harvest Centres of the Consultative Group on International Agricultural Research to coordinate the participation of the Centres. Thanks to those efforts, and the efforts of others, agriculture was firmly on the agenda and given considerable prominence at the World Summit. IPGRI and FAO also took advantage of the WSSD to launch the campaign for the Global Conservation Trust. This effort to secure the future of genebanks in perpetuity was warmly welcomed in Johannesburg and at the 9th Regular Session of the Commission on Genetic Resources for Food and Agriculture. In part as a result of this support the Trust expects to reach its first goal of US$100 million in pledges by the end of 2003.

IPGRI is striking out into new areas of work. A large project to study the conservation and use of wild relatives of crops received the go ahead from GEF/UNEP late in 2002. The project will bring together scientists and policy-makers in five countries, which share both mountainous terrain and a wealth of wild relatives, in an effort to ensure that the countries concerned have the capacity to take care of their plant genetic resources. Making use of wild relatives and other species neglected by mainstream science can make a genuine contribution to poverty alleviation, as an IFAD-supported global project on neglected and underutilized species is proving.

As a result of the experience IPGRI and its partners have gained working with minor crops, we feel it is important to address the question of nutrition. To do so, IPGRI staff and consultants are working on a Nutrition Strategy that will enable us to put our understanding of crop and plant diversity to work in the service of dietary diversity. This too will contribute to poverty alleviation, food security and improved human health.

Finally, we should draw attention to some changes in our Board of Trustees. During the year we were saddened by the death of Gene Namkoong, a member of the Board since 1997 and a good friend of IPGRI. We also said farewell to Marcio de Miranda Santos, our Board Chair for the past six years. We are truly grateful for the leadership and advice he provided during challenging times, and wish him well in the future.

The Millennium Development Goals will be hard to meet. They will require all sectors to work together and even then may not succeed. IPGRI remains committed to the basic premise that diversity is the foundation without which we cannot hope to build the improved agricultural systems that the world’s poor and hungry need to build themselves better lives.
Walking the baking deserts or stony mountain slopes of Jordan in the summertime, when the temperature can reach 40°C and more, it is hard to believe that come the spring, after winter rains, the land will be carpeted with a wealth of green grass and jewelled flowers. That, however, is the reality in Jordan, and generations of farmers and herders have learned not only to survive but also to thrive there. In doing so the local people have built up a formidable knowledge bank that preserves the most valuable of the lessons learned through their active innovation and experimentation. An IPGRI project, funded in part by the Noor Al-Hussein Foundation, seeks to document that knowledge, preserve it, and make it more widely available.

Nabeel Abu-Shriha and Mahmoud Hadid, working with the Noor Al-Hussein Foundation, set out to discover what farmers and pastoralists from all of Jordan’s different regions could tell them. “The diversity of climatic regions in Jordan makes the Jordanian farmer a mobile information encyclopaedia,” say the researchers, who sought to understand not only the use of local plants as food and feed for livestock, but also how some are valued as medicines and others for handicrafts. Nor did they neglect associated information, such as the best time of year and place to gather these plants, or the procedures needed to make a particular product.

As in so many parts of the world, genetic diversity is under threat, and for all the usual reasons: intensification of agriculture, changed patterns of land use, physical erosion. Older landraces and wild varieties, which were widely planted in the past, are in decline. Farmers no longer grow the semi-wild wheat and barley landraces that they used to. Local olive and fig selections are also being abandoned, as are the wild plums and staples of the vegetable garden, such as watermelons and onions. Farmers cite droughts and water scarcity—springs have dried up and flows in some rivers are greatly reduced—as driving the shift away from old and traditional crops. They prefer improved varieties of just a few cash crops, to sell in the markets, and they say that these represent a better use of the available supplies of water.
Farmers are well aware of the root cause of water scarcity. They mention increases in population, which lead to house-building and deforestation, which in turn take both land and water from agriculture. They also shared some of the traditional practices that make better use of land and water. One of these is known as shigag, which involves allowing animals to graze narrow strips across the slope of a hillside. Land prepared in this way absorbs more of the winter rain and gives a better harvest the following year. Another technique involves building sand walls along the contours, which again slows down the runoff of rainwater and thus ensures better penetration for the following season’s crops.

Low rainfall hits diversity in two ways. First the natural forages that support livestock on the rangelands are less productive, so the animals may eat into the natural capital of these resources. That damages the land in the long term. Secondly, lack of water stunts the growth of crops planted specifically to provide feed for livestock, which further intensifies grazing pressure on the rangelands.

The surveys also tapped farmers’ knowledge about the use of wild plants. In addition to the expected information about sources of food and fodder, and how best to make use of it, the researchers also uncovered some surprises. Wild pistachio, for example, is a source of chewing gum. People deliberately damage the trunk of the tree and collect the thick liquid that bleeds from the wound. This is dried to make a gum that people chew for pleasure and medicinally to treat oral disease and stomach disorders. The use of pistachio resin in this way was once more widespread, but it still survives in a few areas. People also use wild fenugreek flowers, gathered in the winter, to help make a kind of soft cheese known as gee. The flowers, and another additive derived from pine trees, help to coagulate whole milk to make the gee.

Abu-Shriha and Hadid conclude that many of the individual nuggets of knowledge the farmers shared with them could have an impact on the sustainability of farming and livelihoods if copied across the country. And they make a plea for more studies to include participation by farmers. “Not only is it a way of doing better, more relevant research,” they say, “it is also a way of empowering communities at the same time.” Every development programme, they say, should include an assessment of the impact on agricultural biodiversity and should work with farmers to make use of their experience in building a more sustainable system for making use of the available natural resources.

Further information
r.khall@cgiar.org
The common wisdom about many tropical tree seeds is that they are difficult to store for any length of time. Unlike conventional seeds of, say, wheat, or barley or rice, they do not take kindly to drying and generally fail to germinate unless handled with care and planted quickly after they have matured. Even seeds collected in the forest and taken to nurseries often perish on the journey. Such seeds are called ‘recalcitrant’, and they have made it difficult for people to manage re-afforestation schemes in the tropics: because there is such a narrow range of species from which to produce seedlings, planting schemes suffer a lack of diversity and also may lack species local to the area. But a recently completed project, funded by Danish International Development Assistance (Danida) and coordinated by IPGRI and the Danida Forest Seed Centre (DFSC), discovered that many species are not, in fact, quite as recalcitrant as had been believed. Almost half the species examined can actually be stored for reasonable lengths of time, provided they are treated with care.

The primary goal of the project was to examine in detail the storage biology of economically important tree species, with a view to increasing the diversity of available species. In addition it was vital to improve the abilities of partners to work with these tree seeds. So training and sharing information was an integral component of the project from the start. At an early workshop in 1996 the partners came together to define a screening protocol that would be used to test all the species. The protocol established ground rules for collecting and handling seeds and enumerated the many different pieces of data that researchers needed to collect. It also set out specific methodologies to adhere to when drying seeds and then when testing their germination. By adopting a single protocol the partners ensured that data gathered around the world by different centres, and from different species, would be comparable.

In the end, 22 tree-seed institutions from developing countries participated directly in the seed-testing aspects of the project. Other centres in more developed countries acted as ‘replicating partners’, offering training in the agreed protocol and confirming the research results where possible. The project focused especially on valuable species that were also of social importance, because these are the species people are most interested in.

Studies on 61 tree species in 18 countries have resulted in techniques that give foresters and nurseries access to far greater diversity as they seek to manage forest genetic resources.
The big surprise was that many species could indeed be stored, if handled properly. Just under half (46%) of the 61 species screened had seeds that could be dried and stored. A further 41% were sensitive to desiccation and did not survive, with results for the remaining 13% still inconclusive at the end of the project. By making use of this information in seedling nurseries, foresters can begin to think about extending the range of species they work with in re-afforestation schemes.

In addition to the training that replicating partners were able to offer to the institutes they worked with, the project also organized three regional training workshops, in Africa, Asia and Latin America. In all 53 people from 32 organizations benefited from these workshops and were able to put their enhanced skills to work.

One of the great successes of the project has been the way that it offered a platform for the publication and sharing of results. A Web site (www.dfsc.dk) gave researchers and others access to the latest results. A newsletter, published twice a year by IPGRI and DFSC, not only provided a home for published papers but also extended the scope and reach of the project partners by informing them of meetings and research relevant to the work. For example, other scientists, who were not part of the project but who were working with recalcitrant seeds, submitted short communications and other information. IPGRI and DFSC hope to continue publishing this newsletter even after the end of the project, as a way of extending the life of the International Tropical Forest Recalcitrant Seed Network that the project gave birth to.

At a final workshop the partners discussed the lessons they had learned during the lifetime of the project and the challenges they now faced. The replicating partners noted that sometimes seeds had died or been damaged as a result of lengthy delays during transit from the collecting institute. Ways will have to be found to overcome this, and the partners are thinking about modifying the protocols to improve conditions during transport from the field sites to the laboratories. Germination was also a problem for some species. Obviously not all species are identical in their requirements and it may be necessary to identify different procedures for different species.

Overall, the final workshop identified three objectives that future work should address. First is the need to scale up the use of target species in planting programmes, which will mean improving the collection and supply of seeds, better nursery practices, and changes to the way seedlings are planted and cared for. These efforts, however, will be valuable only if they are a response to increased demand, which will require a public awareness programme to disseminate the results, conclusions and recommendations of the project to those involved in tropical forestry and to the general public. And, finally, there remain outstanding research questions that will require further study to improve the use of high-value tropical tree species.
The International Treaty on Plant Genetic Resources for Food and Agriculture, adopted by the member countries of the Food and Agriculture Organization of the UN in November 2001, is the latest formal recognition of the vital contribution that genetic resources make to food security, poverty alleviation and environmental sustainability. While the Treaty, with its emphasis on multilateral access and equitable benefit sharing, is welcome, it creates yet another factor that national governments have to take into account as they frame their laws and policies about genetic resources. IPGRI has long been involved in the analysis and synthesis of policy options but in 2002 a new project, the Genetic Resources Policy Initiative (GRPI), got under way in earnest.

GRPI is supported by governments and foundations and is jointly executed by IPGRI and Canada’s International Development Research Centre (IDRC). It is rooted in the idea that regulation of the use, control, management and conservation of genetic resources has become increasingly complex and fragmented across different policy-making bodies in any given country. In part these challenges arise from technology. New ways to divide and make use of genetic resources, such as the direct manipulation of DNA, bring forth new arguments about the ownership and use of new products and processes. In part the challenges arise from socioeconomic changes as newly empowered stakeholders, such as farmers, indigenous peoples and even governments, raise their own concerns and demands.

Faced with the clamour of competing claims, government departments and policy-makers do their best but often lack the basic evidence on which to make policy decisions. They may also have very limited budgets, and in some cases are wary of developing any policies.

Members of the GRPI task force and appraisal team in Zambia. Left to right: Prudence Musonda, Dr Judith Lungu, Sande Ngalande, Ronald Msoni, Mwendabai Uyoya, Dr Catherine Mungoma, Brian Mwitwa Chimbanga, Dr Walter de Boef, Lovemore Simwanda and Godfrey Mwila.
J. Estrella/IPGRI
whatsoever for fear of attracting public disapproval. Often individual policy-makers go their own way and do not consult either with colleagues or with other stakeholders. The result can be an uneven patchwork of policies and laws that reflect uncoordinated and competing priorities.

GRPI aims to use a two-step process to help governments and regional groupings to build a more coordinated policy platform. The first phase of the project is the Southern Country Demand Analysis. This consists, essentially, of getting to know what it is that national partners need in the way of genetic resources policy. It begins with primary contact, usually in the department of agriculture, through which the project gets in touch with as wide a range of stakeholders as possible. Missions by GRPI staff to the country generally follow and involve preliminary meetings with 20 to 30 representatives of various interested parties. These include non-governmental organizations (NGOs), local communities, farmers’ organizations, government departments, private sector interests, Future Harvest Centres, internationally funded projects and so on. In these initial meetings the GRPI team probes the willingness of each party to work with others in multi-stakeholder, multi-sectoral processes. If they are willing to work together then GRPI supports them to create a small national GRPI task force to undertake the demand analysis.

“So far, almost everyone has been willing,” commented Michael Halewood, who oversees the project and has helped GRPI task forces start work on demand analysis in Nepal, Peru and Zambia. (Work in Egypt, Ethiopia and Vietnam was due to start early in 2003, as was the establishment of the GRPI project office in IPGRI’s regional office for sub-Saharan Africa in Nairobi, Kenya.) The demand analysis covers a wide range of questions, assessed through interviews and questionnaires. What laws and policies currently affect genetic resources? Who is doing what with respect to genetic resources? What are the hot topics in genetic resources that the country will have to address in the near future? What resources have they got to address those issues? What resources do they need?

Financial support and collaboration

GRPI is financially supported by the Netherlands Ministry of Foreign Affairs, BMZ/GTZ (Germany), IDRC (Canada), Rockefeller Foundation (USA) and CIDA (Canada).

Collaborating institutions (hosting task forces):

- Institute for Biodiversity Conservation and Research, Ethiopia
- National Agriculture Research Council, Ministry of Agriculture (NARC), Nepal
- Instituto Nacional de Investigación Agraria (INIA), Peru
- Ministry of Agriculture and Cooperatives, Zambia
- East African Plant Genetic Resources Network (EAPGREN)
- Genetic Resources Network for West and Central Africa (GRENEWECa)

Discussions with partners in the Comunidad Andina, Egypt and Vietnam, are continuing.
The demand analysis will culminate in a national workshop at which the interviewed parties come together to use the results of the survey to agree a list of priority areas for action and a work plan to undertake them. That meeting ends with the expansion of the task force to include still more representatives of different partners, to guide the projects in the work plan. Carrying out the activities identified by the demand analysis and incorporated into the work plan by the stakeholders constitutes phase 2 of the GRPI project in each country. It is anticipated that phase 2 will take between 3 and 4 years.

The report and work plan formulated at the end of the demand analysis will be formally submitted to the government and regional groupings. The actions and research will also come to a GRPI International Steering Committee, which will evaluate each country’s plans and may, if necessary, offer suggestions as to how different GRPI countries could work together to achieve synergies and efficiencies.

And when it is all over, what will the outcomes be? To some extent that will depend on the needs identified by each country. Broadly speaking, however, the project foresees several different kinds of output, beyond the surveys. There will be research papers and training materials. Domestic governments will be more capable of formulating their policies on genetic resources and of ensuring that all parties are consulted and represented in a coordinated system. The project may have a core of draft national policies and laws related to genetic resources which, it is hoped, will be part of an Internet-based brokerage service that will link national policy-makers, trainers and researchers to a compendium of documents of various types, and that will enable them easily to communicate with one another. Ultimately, though, these are simply steps on the road to a framework within which the use, control, management and conservation of genetic resources are based on a sound foundation of fair and effective policies and laws.

Further information
j.estrella@cgiar.org
m.halewood@cgiar.org
In India, food scientists use ancient ingredients and modern technology to prepare snacks for sale in local supermarkets. In Bolivia, farmers plant grains that are more nutritious than both wheat and soybean. In Egypt a community-based seed system is supplying improved oregano seeds to the farmers who in turn supply a growing market for herbs. What unites all these activities is that they are making the most of plant species that have been bypassed by mainstream agricultural research and development. They are just three examples from a global study coordinated by IPGRI and supported by the International Fund for Agricultural Development (IFAD).

The programme has grown from modest early beginnings. The Italian government supported an effort to investigate neglected and underutilized species of the Mediterranean region some 10 years ago. That transformed a wild salad-leaf, rocket, into a fashionable foodstuff and gave new life to the hulled wheats, especially farro. The lessons learned and approaches adopted in that early work have now been applied in several IPGRI projects and they feed into a new strategic direction for IPGRI, one that focuses squarely on nutrition. The IFAD study is only in its first year, but has already made considerable progress in all of its areas of interest.

One important objective of the study is to make sure that local people can improve their livelihoods in a sustainable way by working with the target species. The people at the start of the process of agricultural production are the ones doing the vital work of maintaining and growing the diversity, and yet at present they reap very little of the rewards for doing so. An earlier case study of the filière, or commodity chain, for capers in Syria brought to light some of the problems. Picking wild capers is typically a job for young children in marginal areas. They get about Euro 0.70 a kilogram from intermediaries, who do a little preliminary processing and then sell the capers to a Syrian trader for about Euro 1.30 per kg. The Syrian trader sells to a Turkish trader for about Euro 2.00 per kg. The Turkish trader does the final processing and packaging and sells into the European Union market, where consumers pay the equivalent of about Euro 27.00 per kg. That is a final markup of more than 3800% from the child gathering the capers to the shopper in the supermarket. If just a little more of that could be passed back to the families it would make a

In Bolivia Fundación PROINPA holds 2727 varieties of quinoa. All are being evaluated to see which would be most useful.
A. King/IPGRI
huge difference to their standard of living—and enable them to buy the food they need to be healthy. So working with commodity chains to ensure that farmers get a fair return is an important component of the project.

At the other end of the chain are consumers, whose needs may be very different. The Kolli Hills in the centre of Tamil Nadu state, in the south of India, have seen some remarkable developments thanks to the IFAD project and the M.S. Swaminathan Research Foundation. As a result, people in nearby towns and cities now have access to cheaper and more nutritious foods based on various kinds of millet.

Millets underpin much of the agriculture in the Kolli Hills, and under the guidance of the project, farmers’ self-help groups were established to promote and exploit these small-grain cereals. The groups identified two products as worthy of further development, malt made from a finger millet and a mixed-grain preparation that is particularly useful to diabetics. The groups are organizing micro-finance schemes to enable them to buy simple milling and processing equipment, which will give them a bigger share of the added value. And food technologists have worked with the people in the groups to develop new products, such as biscuits and snacks, that make use of the processed millet grains.

One task the project still has to address is that urban shoppers may not be aware that millet-based products are often healthier than more expensive alternatives. Urbanites often tend to associate traditional foods with the peasantry and ‘backwardness’ and it will take concerted educational efforts to change their minds. The result, however, is a win–win virtuous circle that protects genetic diversity and the wider environment, offers farmers a better standard of living, and thus better health, and also offers shoppers the chance to buy healthier food.

It is the prospect of so many multiple benefits that has increasingly led IPGRI to work more on nutrition. The African Leafy Vegetables project is just one example that has shown that locally important plants, such as cat’s whiskers (Cleome gynandra) and black nightshade (Solanum nigrum), generally contain considerably more minerals and vitamins than introduced crops such as cabbage. Promoting the use of indigenous crops can improve the health of farming families directly and, by stimulating demand in nearby cash markets, can also contribute to better incomes. Similar approaches are possible throughout the developing world, which is why during 2002 IPGRI worked with Honorary Fellow Professor Tim Johns, taking a sabbatical from McGill University in Canada, to develop a new nutritional strategy.

The crucial observation is that worldwide, peoples’ diets are becoming simpler, less varied and with lower nutritional value. This is especially so as people move from rural to urban areas. The simpler diets are often energy rich but nutritionally poor, and the result is poor...
health, with the incidence of obesity and diseases such as diabetes and heart disease growing dramatically among the urban poor. In diet, as in agriculture, diversity is often of value in its own right. A rounded nutritional strategy will make use of a mutually reinforcing cycle of improvement.

As an example, imagine boosting the demand for a traditional rural foodstuff among city dwellers. The people who buy the food enjoy greater health. That gives them a certain independence and will probably contribute to their ability to earn a living themselves. The farmers who grow the food, and the people who process and sell it, will make more money too, which will enable them to enjoy better health, and will contribute to keeping social and cultural traditions alive. The need to grow the food will promote its conservation and thus add to the protection of the environment, and that too can help maintain traditions. And finally, a better environment also contributes to the nutrition and health of people in cities and rural areas alike.

There is enough evidence, from IPGRI projects and elsewhere, to suggest that a strategy to link nutrition, health and the conservation of biodiversity has much to recommend it. People need a diet that gives them quality as well as quantity, and affordability is often the limiting factor. Urban dwellers, who buy their food in a cash economy, may be in an even worse position than those who have access to land in rural areas. If the connections can be made it will benefit everyone.

Further information
Underutilized species: s.padulosi@cgiar.org
Nutrition: p.eyzaguirre@cgiar.org
m.grum@cgiar.org

The Karanjee Limuni Women's Seed Saving Group in Santa Monica, Kenya, is helping to ensure that people can buy good seed of local leafy vegetables.
A. King/IPGRI
IPGRI and FAO jointly established the sub-Saharan Africa Forest Genetic Resources Programme (SAFORGEN) in 1999. One of the key requirements to emerge from initial workshops with partners was the need to develop conservation strategies for selected species. In August 2000 a project funded by UNEP began in three countries—Benin, Kenya and Togo—to examine the status of target species in each country. Preliminary results are now in and have indeed resulted in recommendations for conservation strategies.

Each country chose two tree species, one with a wide distribution and one more geographically restricted. In Benin the choices were two fodder trees, Khaya senegalensis and Afzelia africana. Kenya chose two food species, Dialium orientale and Tamarindus indica. In Togo the choices, Alstonia boonei and Nauclea latifolia, are used primarily as a source of medicines against malaria. The choices thus fit with SAFORGEN’s existing sub-networks, which concentrate on species used as food, medicines, fodder, and wood and fibre. The decision to concentrate this study on species important for food and medicine was deliberate, as malnutrition and disease are among the most pressing problems for people in the region.

In each country the same sorts of parameter were studied, with slightly different emphasis depending on local conditions. These included the distribution of the target species, the level of threat, including patterns of use, reproduction and seed dispersal, natural regeneration, and levels of diversity within populations and the species as a whole.

Benin

A. africana is broadly distributed while K. senegalensis is restricted to the northern part of the country. Both species are used primarily to feed animals, by lopping branches, although they are also used for timber and medicinal purposes. The level of threat varied

Project partners

- National University of Benin, Benin
- Kenya Forestry Research Institute, Kenya
- CERPHALATA (NGO), Togo

The leaves of Nauclea latifolia are valued in Togo for their medicinal properties.

O. Eyog-Matig/IPGRI
across the country. In the north more than 97% of the specimens of *K. sengalensis* showed some evidence of harvesting branches. To conserve the species the project suggested two options. First, both can be conserved in forest reserves and national parks, where the threat is lower. And secondly, in northern areas, the species can be conserved in plantations, possibly with improved selections, which would take the pressure off natural populations.

Kenya

T. indica and *D. orientale* are both harvested for their fruit, which may be eaten alone as pulp or juice or used to flavour other dishes such as porridge. Both species are in decline, but of the two *D. orientale* is at greater risk. In part this is because its range is more restricted, to just the coastal region of Kenya. It is also threatened by urban expansion. The project recommended that *ex situ* conservation measures be implemented as soon as possible to establish collections of seed in genebanks and perhaps also trees in field genebanks. For *T. indica*, which is more widely distributed and less threatened, *in situ* conservation within gazetted forests, which have been officially designated for protection, and *ex situ* conservation in genebanks were recommended.

Togo

As in the other two countries, the surveys confirmed that one species, *N. latifolia*, is widely distributed all over the country, while *A. boonei* is restricted to the less extreme climate in the southwest. Even there it is not common, and many species have had most of their bark removed because it is believed to be medicinal. It is also logged for timber and fuel. *N. latifolia* is uprooted for medicinal purposes, and people eat its fruits too. Both species are at risk, particularly because natural regeneration is very low. *In situ* conservation was felt to be the best option for safeguarding *N. latifolia*, especially in the northern areas where it is both relatively plentiful and under most severe pressure. For both species, the project recommended that the way they are harvested be examined and, if possible, improved.

SAFORGEN members

At the end of 2002 the following countries had appointed national coordinators and participated in one or more of SAFORGEN’s activities: Benin, Burkina Faso, Chad, Congo (Brazzaville), Ethiopia, Gambia, Guinea, Kenya, Madagascar, Mali, Niger, Senegal, South Africa, Sudan, Togo and Uganda.
After two years of stakeholder discussions and feasibility studies, the campaign for the Global Conservation Trust was formally launched in 2002. The campaign, a partnership between IPGRI (for the CGIAR) and FAO, seeks to establish an endowment to support the conservation—in perpetuity—of the world's crop diversity collections. The goal is to raise US$260 million from multilateral and bilateral agencies, corporations, foundations and governments. As well as conservation, the Trust will support training and other upgrading assistance to crop collections in need.

The partners announced their plans to establish the Trust at the World Summit on Sustainable Development in Johannesburg. The announcement followed on the heels of the release of a study by Imperial College, UK, ‘Crop Diversity at Risk: the Case for Sustaining Crop Collections’.

The study drew largely on information gathered by FAO in 2000 from about 100 countries. Its findings were alarming: not only is crop diversity disappearing from the fields, but also a large proportion of the crop resources ‘safeguarded’ in genebanks around the world could soon be lost due to lack of funding. The report found that while the number of samples held in crop collections has increased in 66% of countries since 1996 (the last time FAO gathered such data), genebank budgets have been reduced in 25% of countries and have remained static in another 35%. Not surprisingly, the majority of budget cutbacks have taken place in the poorest countries, which are home to the diversity of the world’s most critical crops.

The issue of regeneration is perhaps even more revealing. The new data show that some 52% of developing countries have more samples in need of urgent regeneration than they did in 1996. Among developed countries, 27% reported increased need.

Some genebanks have barely averted disaster, when duplicate seeds held in other lands have been used to replace collections lost in the course of war or natural disaster. Rwanda, Burundi, Somalia and Romania provide a few such examples. Other genebanks have lost or are at risk of losing portions of their collections, Albania, Fiji and Nigeria among them.
Until now, the world community has dealt with genebank crises in an ad hoc manner. The Imperial College report made it clear that such an approach cannot work indefinitely. Even some of the world’s largest genebanks are facing severe budget cuts: the Future Harvest Centres of the Consultative Group on International Agricultural Research (CGIAR) have seen their core funding—the funds that support the genebanks—drop by 50% since 1994. The report recommended the establishment of a global endowment fund for ex situ conservation as the best way to ensure humanity’s ability to meet the long-term nature of its conservation needs.

Public awareness is at the heart of the campaign to establish the Global Conservation Trust. It is a vital way to reach donors—particularly ‘new’ donors who are likely to be unfamiliar with genebanks and their importance. In addition, the intensely political nature of genetic resources issues and the great interest shown by countries in the Trust means that it is critical to ensure openness and transparency in every step taken towards its establishment.

Global media coverage of the Trust has been intense, spanning five continents. Material developed for the Trust’s communications programme received a bronze award in 2002 from Agricultural Communicators in Education (ACE), an international professional society of communicators. (See the Trust’s Web site at www.startwithaseed.org.)

Research by Francisco Morales, assisted by Tito Franco, both at IPGRI’s office for the Americas, revealed the major threats to the ex situ conservation of plant genetic resources in the region. Morales surveyed 103 genebanks, about 40% of those located in the region. The survey clearly demonstrated that the majority (85%) of the curators who replied believe that their infrastructure is not adequate for conservation purposes. The second most important constraint was the lack of adequate seed processing and conservation equipment. A majority of respondents also mentioned pests and diseases and abiotic factors such as drought and flooding, as significant challenges.

Genebanks in the region are also adversely affected by lack of official support, trained personnel, technical support, and lack of proper facilities to conduct strategic and basic research. The lack of documentation and pertinent information on plant genetic resources management is contributing to the loss or deterioration of plant genetic resources in the collections.

Morales concludes that proposals for donor funding should pay close attention to the upgrading needs identified in the survey. Otherwise, the genetic erosion occurring in genebanks could begin to rival that which is already going on in the field.

A lengthy process of research and consultation with stakeholder groups during 2002 examined options for the oversight and governance of the Trust, as well as for stakeholder involvement in decision-making, structure, financial management, allocation of resources, tax efficiency and transaction costs. At the request of and in consultation with a number of key stakeholder groups, FAO and IPGRI, on behalf of the CGIAR, appointed an Interim Panel of Eminent Experts (IPEE) to oversee the establishment of the Trust.
The IPEE will decide the preferred legal status, governance and financial mechanisms for the Trust, based on consultations with a large number of governments, individuals and organizations, South and North. The Interim Panel will also decide upon questions like the proper balance to be achieved in the allocation of funds. The Panel will hold its first meeting in early 2003. (Further information on Trust governance can be found at http://www.startwithaseed.org/pages/governance.htm.)

The Global Conservation Trust initiative was presented to the Ninth Regular Session of the Commission on Genetic Resources for Food and Agriculture in October 2002. The Commission strongly endorsed the initiative, saying in its report: “This initiative was universally appreciated and supported, and appeals were made to donors to assist in the establishment of the Trust. The Trust would, it was hoped, attract new and additional funds from a wide-range of donors. The Commission stressed the need for the Governance of the Trust to work in a transparent and efficient manner, as proposed, and requested progress regarding the Trust to be reported at sessions of the Inter-governmental Technical Working Group.” The Trust also received “consistently strong statements of support from the floor” when it was presented to the FAO Commission on Plant Genetic Resources for Food and Agriculture during its meeting from 14 to 18 October.

By year’s end, the Trust had received significant commitments from public and private sector sources and from developed and developing countries. It is expected that the Trust will reach its first goal of US$100 million by the end of 2003. In that case, the first call for proposals from genebanks will take place in mid-2004 with the initial grants awarded at the end of that year.

Further information
rraymond@cgiar.org

Workers clean seed before it enters the national Andean Grain genebank in Peru.
A. King/IPGRI
New banana project on target

The disease resistant and high-yielding varieties of plantain and banana developed over the past few years represent the most significant scientific achievement in the history of breeding *Musa*. They are between two and five times more productive than traditional varieties and yield well without the need for labour-intensive management, which makes them especially useful in countries ravaged by AIDS. Along with other techniques, such as the bulk production of disease-free planting material and improved post-harvest handling and processing, the new varieties could make an enormous contribution to food security and poverty alleviation in sub-Saharan Africa.

In 2002 a joint project of IPGRI and the International Institute for Tropical Agriculture (IITA), funded by the Technology Access Fund of the Technology Applications for Rural Growth and Economic Transformation (TARGET) programme of the United States Agency for International Development, started to roll out a package of benefits in four African countries: Cameroon, Ghana, Mozambique and Tanzania.

The starting point for the programme is the new varieties. These were selected with partners in each participating country to ensure that they met the farmers’ needs. Thus in Tanzania the choices are good for cooking and brewing, while in Mozambique dessert varieties were chosen with an eye on the nearby export market in South Africa. IPGRI supplied virus-tested *in vitro* cultures to a commercial laboratory in South Africa, which is bulking them up so that it can send thousands of rooted plantlets to specially built weaning facilities in each country. There the plantlets are weaned off their special nutrients, hardened off, and grown to about 30 cm in height before being despatched to the participating farmers.

Roughly 500 farmers are taking part in each country, about 50 in each of 10 villages. They get not only the improved varieties but also considerable amounts of training. The project is working with community extension workers and representatives of the farmers, training these trainers so that they can spread the word about how to make best use of the new varieties. Training covers managing the plants for maximum productivity and, more importantly, improving the market quality of the fruit they harvest.

The project is also working with the communities in each village to develop and promote new ideas about sales and marketing. The focus will be on adding value to the crop. So, for example, communities will learn how to make sun-dried banana chips and banana juice, both of which extend storage and improve the value of the harvest. There are also plans for communities to develop handicrafts that make use of banana fibre and the like.

The final strand is particularly innovative as it closes the cycle, making the project both self-sustaining and capable of rapid expansion. At the
end of the first year each farmer will be expected to return one sucker for every plant he or she received. These will go back to the central facility in each country, where they will be cleaned up so that they can be given to a second wave of farmers. Thus in the second year another batch of farmers will be given clean planting material of the improved varieties. Project workers expect this to carry on beyond the life of the project to ensure a continual and expanding supply of improved planting material.

That’s the plan, and implementation has been going extremely well. Project sites have been identified in each country and arrangements made to manage them. Some 64,000 plants of eight varieties were bulked up and rooted, ready to be sent to the farmers early in 2003. Workshops in the villages have introduced the ideas and gained the support of the farmers and extension workers.

Experience in more limited trials gives great cause for optimism. At the core are the resistant varieties, which can restore the productivity of areas ravaged by black Sigatoka disease. Clean planting material has already proved effective against nematode worms and weevils in trials in Cameroon, Ghana, Tanzania and Uganda. In Uganda, more than 90% of farmers who used clean planting material found the mature plants more vigorous and robust and the fruit of higher quality. In Ghana, clean planting material was an essential component of an improved management package that increased farmers’ incomes by about US$475 a year. Marketing too has proven its worth. Low-tech options for storage, such as banana chips and banana juice, have been rapidly adopted in trials in Uganda and Tanzania. Another idea pioneered in Uganda, selling bananas of some varieties singly, instead of by the bunch, not only allows farmers to market small bunches that were previously unsaleable, but also meets the needs of the urban poor, who may not be able to afford to buy a whole bunch at a time. The need, now, is not for further trials but for the wider promulgation of a package of best practices.

On conservative estimates the project could easily enable each farmer to earn an extra US$80 in the first year. By the end of the second year, the project could be helping the farmers involved to earn an extra US$1 million in total, with the ability to continue rapid deployment beyond the life of the project. Thus there is every chance that the project will achieve its goal of improving the food and income security of small-scale farmers in selected countries in sub-Saharan Africa.

Further information
e.akyeampong@cgiar.org

Project partners

Implementing agencies: IPGRI, IITA

Cameroon: Centre Africain de recherché sur bananes et plantains (CARBAP); Cameroon Gatsby Trust

Ghana: Council for Scientific and Industrial Research; World Vision International

Mozambique: Instituto Nacional de Investigação Agronómico; Extension Department, Ministry of Agriculture and Rural Development; University Eduardo Mondlane; Institute of Tropical and Subtropical Crops; Technoserve

Tanzania: Agricultural Research and Development Institute; Adventist Development and Relief Agency; FAIDA; Kagera Community Development Project

Ignatius Nkondung, one of five extension agents recruited by the project in Cameroon. He works with about 100 farmers in two villages, to whom he is taking a variety called FHIA 17.

A. Nkakwa Attey
Participatory plant breeding explicitly brings together farmers, plant breeders and development personnel in the effort to create and disseminate improved varieties and to strengthen farmers’ own local materials. The idea is that each brings special insights and skills to the effort. As a result, their combined whole contribution will be greater than the sum of its parts. To what extent, however, is this wishful thinking? Perhaps not at all, if popularity is any judge. From roughly nowhere 10 years ago, by 2002 there were about 120 such projects going on around the world, with 80 of them well documented on the Web site (www.prgaprogram.org) of the CGIAR’s Program on Participatory Research and Gender Analysis in Technology Development and Institutional Innovation (PRGA). Then again, maybe that popularity merely reflects fashion—among donors and executing agencies.

Prompted by these concerns a System-wide Review of Plant Breeding Methodologies in the Future Harvest Centres recommended that “Centres should evaluate the use of [participatory plant breeding] as an organic part of each Centre’s entire breeding programme”. In response, the PGRA and the System-wide Genetic Resources Programme (SGRP) got together to organize a week-long meeting that was held at IPGRI’s headquarters. To have two system-wide programmes co-host a meeting was somewhat unusual. Yet it encouraged a diversity of perspectives, and ensured that the links between plant breeding and crop diversity would be integral to the review process, rather than simply *ad hoc*. And of course an integrated, diverse, holistic perspective is exactly the basis on which farmers manage their land, their use of natural resources, their households, and so on.

Although the meeting was small—just 35 participants—it brought together the leading people in participatory plant breeding from the Future Harvest Centres and, as would be expected given the topic, expertise from farmers’ organizations, non-governmental groups, university departments, development workers and national agricultural research systems. A total of 17 papers were presented, grouped by the planning committee into six umbrella topics. What follows is a brief selection. The proceedings, including all the papers and discussions and full attributions of the multidisciplinary teams involved in so much of the research, is available at www.prgaprogram.org/participatory.htm.

Priority setting

Participatory plant breeding is founded on the shift from technology push to demand pull. But if breeders are really to...
comprehend what farmers are demanding they need to have a deep understanding of the farmers’ production systems and goals, and how they reach their decisions. In Nepal’s western Gulmi district, Li-Bird (a local NGO), with support from IPGRI/PRGA and partners, has worked to establish \textit{Krishak Anushandhan Samuha}, or Farmers’ Research Committees. These act as a bridge between farmers and researchers to plan, implement and evaluate participatory maize breeding. The farmers in Nepal have used mass selection to isolate three new maize varieties from diverse material they were supplied with, and these are being widely adopted.

In East Africa too, farmers have been working on maize. Commercial varieties do very poorly against old favourites, which prompted researchers from the International Maize and Wheat Improvement Center (CIMMYT) to get together with farmers and the formal sector in a breeding programme. By engaging farmers early in the selection process many people assess many breeding lines at many locations. After three years, some interesting observations have emerged. Breeders seem less interested in the process than farmers, perhaps because these experiments generate large, messy data sets that the breeders find hard to handle. More interestingly, there was little correspondence between the evaluations of the farmers and those of the breeders. For farmers, yield accounts for only about half of the total score they give a variety; many other criteria are important. Breeders seem focused on yield \textit{per se}. This suggests that one reason commercial varieties do not do well is that they do not meet farmers’ needs.

\section*{Scale-up}

Putting a few farmers in touch with a breeder or two is one thing. But in north-eastern Brazil 1500 families in more than 70 communities are working with the cassava improvement programme to try new varieties. Each farm grows plots of 50 plants of each of the most promising new varieties to emerge from preliminary breeding, plus a local variety for comparison. The most tangible outcome has been the release of two new varieties resistant to root rot, a scourge of cassava growers. The effort has also changed the way breeders and farmers work. The breeders get feedback on their choices early and often, which makes it more likely that the needs of the farmers will be met and that the new varieties will be adopted. The farmers get more cassava diversity on their properties, which seems itself to offer some protection against pests and diseases. In general, the flow of information about varieties and the varieties themselves has been enhanced. It remains to be seen how the efforts of farmers that result in the official release of new varieties can be recognized, if at all.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{farmers.png}
\caption{Farmers in Sergipe State in Brazil with a new cassava that is resistant to root rot. The farmers chose this variety from a selection of crosses supplied by government breeders. W. Fukuda}
\end{figure}
Intellectual property rights

Ethically, all collaborators in a project should benefit from their collaboration. That would see the benefits that accrue from the release of a variety produced as a result of participatory plant breeding shared among all the participants. At present, however, there are no clear guidelines for how this might be achieved. Indeed, most work to date has skirted the issue with one of two very different strategies. In the first case, varieties have been fed into the formal sector with no reward for farmers’ inputs. In the second, the varieties have been released into the farming communities with no official launch and no direct reward for the breeders. Neither is fully satisfactory. As a contribution to the debate, Louise Sperling (International Center for Tropical Agriculture—CIAT) and Dan Leskien (independent consultant) reviewed the legal requirements of collaboration, including joint inventorship and employee inventions in the USA, UK and Germany (and many other countries) in a bid to uncover elements that might be used to establish joint breedership and employee varieties. They conclude that “existing legal regimes may not be sufficient for ensuring that [participatory plant breeding] collaborations unfold fairly for all partners.” A formal agreement may be needed to examine benefit sharing as well as more general access issues. The use of such a ‘Code of Conduct’ is presently being reviewed by the PRGA. Much is at stake.

Impact

Just how valuable is participatory plant breeding? The International Center for Agricultural Research in the Dry Areas (ICARDA) has made use of participatory barley breeding since 1996 and has undertaken a detailed economic study of the costs and benefits for research institutes and farming communities. The greatest gains come from the reduction in research time and the speed with which varieties developed with the participation of farmers reach rural households, generally 3 or 4 years before conventional varieties. In the Syrian context, increased speed of uptake alone can more than double the return on investment. There are other benefits too. Putting farmers on the team helps identify early-maturing varieties, which are especially useful for the poor.

Increasing holism and integration

One of the challenges facing participatory plant breeding is to mesh it more closely with existing efforts to conserve and broaden the use of genetic diversity in farmers’ fields. That, of course, requires a deep understanding of how farmers conserve and use the diversity they already have. In Nepal, for example, informal networks may not promote the exchange of information and diversity. In response, communities have been encouraged to hold diversity fairs, which act as a source of seed for newly developed varieties as well as for more traditional selections.

In Rajasthan, in India, farmers do not simply replace their old pearl millet varieties with modern seed. They make seed mixtures, and use small amounts of modern seeds and seeds gathered from hybrid varieties as breeding material, along with their local populations. Knowing this, researchers have worked to support the farmers’ own breeding efforts. One problem is that plant populations that farmers have modified, perhaps by selection, or mixture, are often better when conditions are favourable but offer no advantage at all under drought stress. So the poorest people, in the most marginal

In Nepal old varieties of rice hang in a display. Farmers are working with researchers to improve their traditional varieties. A. King/IPGRI
environments, do best by also guarding their traditional varieties. This too needs to be borne in mind by breeders wishing to work with farmers.

Future horizons

Most participatory breeding to date has built on farmers’ traditional practices and wisdom. Is there a place for modern technology in participatory efforts? Probably so. A study of rice in India and Nepal used an approach called marker-assisted selection to improve efficiency. Marker-assisted selection uses genetic markers to screen the offspring of a breeding cross for the presence of a particular trait, often genetically rather complex and poorly inherited. The idea of the study was to create bulk populations that brought together markers for several traits, for example those that help plants avoid and tolerate drought, such as deep roots, early flowering and retaining green leaves. The breeders crossed two varieties, one that has many qualities that farmers prefer and another that is drought resistant but shunned by farmers. Marker-assisted selection allowed the breeders to find those offspring of the cross that combined the good qualities of both varieties. These were bulked up and given to farmers to grow alongside their usual varieties. The farmers consistently preferred the breeders’ crosses to their own varieties, although those crosses are still quite variable. The breeders were especially pleased that the farmers had noticed that one of the bulks had the characteristic smell of aromatic rice, which commands a higher price in the market and which had never before been grown by upland farmers in Eastern India.

While more remains to be done, this study shows that modern technology can provide participating farmers with material that already matches their needs. Moreover, the scientists are now looking at varieties that the farmers had selected from random offspring and asking whether those selections can be used to discover genetic markers for the specific qualities that the farmers prefer. First indications are that they can.

Conclusions

As this all-too-brief survey reveals, there is much that is good—and getting better—in participatory plant breeding. Of course challenges remain. For example, the formal sector is still pretty resistant to the idea, and participatory plant breeding tends to be carried out project by project rather than being institutionalized. Nevertheless, the meeting ended on an upbeat note as evidence is growing that participatory plant breeding indeed offers a valuable set of approaches to the problem of improving overall food security, reaching more marginal farmers—and saving money along the way.

Further information

l.sperling@cgiar.org
j.toll@cgiar.org

Farmers in India with the bulk populations of rice that had already been selected to have a good chance of bringing together desirable qualities.

K. Steele
A fundamental assumption of the early days of the Green Revolution was that the new varieties being produced were so superior that farmers would be foolish not to replace their traditional landraces. Indeed, to suggest that they continue growing old varieties was to condemn them to perpetual poverty. And since they would inevitably abandon old varieties, the only safe way to conserve the diversity of the old varieties was to collect seeds and store them off site, in *ex situ* genebanks. Strangely, not all farmers did give up their old varieties. In some environments, they continued to grow them. On this observation was built the complementary strategy of *in situ* and on-farm conservation. The question remains: why do some farmers in some places continue to grow old varieties?

Many studies by IPGRI, its partners, and others, have offered answers. Most often these are couched in terms of the non-market value of the old varieties under particular conditions. Diversity may be needed to cope with different land on the same farm, for example wet valley bottoms and dry uplands. Different varieties may be preserved because they are adapted to different uses. Varieties may have spiritual or medicinal value. Until recently, the straightforward relative economic costs and benefits of landraces versus modern varieties had not been examined. Over the past year, however, intriguing results have begun to emerge.

The most complete study to date concerns the rice farmers of Nepal, where IPGRI's *in situ* project has a long and fruitful collaboration. Devendra Gauchan, of the Nepal Agricultural Research Council, is completing a doctoral dissertation that illustrates the complexity of assessing the value to farmers of old and new rice varieties. In Bara, a fertile, lowland site on the southern border with India, Gauchan and other researchers surveyed the farmers to measure the costs and benefits associated with traditional and modern varieties. In good environments the modern variety China-4 is much more profitable than the traditional Nakhisaro. In fact for every additional rupee they invest in China-4 instead of Nakhisaro, farmers can expect to earn more than 13 rupees, a rate of return that is more than 10 times higher than the minimum rate of return that farmers expect. Taking the community as a whole, the cost of not growing China-4 would be more than rupees 1 million per season (more than US$15 000 in 1999). Small wonder then that China-4 is indeed replacing traditional varieties such as Nakhisaro.

But only in favourable environments—those where farmers have access to productive,
irrigated land, modern seed and well-functioning markets. In marginal environments, such as the uplands and swamps of Bara, no modern varieties can compete with traditional landraces. Farmers lose nothing by growing old varieties. Indeed, they would be foolish not to.

The researchers divided the farmers into three categories, rich, medium and poor. Farm size varied with wealth, as did the amount of irrigated land. But astonishingly, it was the poor farmers overwhelmingly who grew only modern varieties. About two-thirds grew no traditional landraces, while 60% of the rich and medium farmers grew ancient and modern varieties simultaneously. It may be that wealthier households can absorb the labour and management costs associated with a more complex pattern of rice-growing, but in any case this result must give policy-makers pause for thought as they wonder how to support on-farm conservation of diversity.

Neoclassical economic theory has a hard time explaining why farmers might grow two or more varieties simultaneously. ‘Efficient’ farmers should grow only the most profitable. However, just as the farmers’ decisions make sense if one factors in, for example, different growing conditions in different fields, so too they can make sense if the household is faced

Hungarian home gardens (re)valued

In Hungary, during the period of collectivized agriculture, small plots ranging in size from a few square metres to 5 hectares remained in private hands. These home gardens are micro-agro-ecosystems, farmed intensively with family labour. They are a treasure house of ancient crops and livestock breeds that improves family diets at the same time as enriching the biodiversity of the Hungarian countryside. A partnership of IPGRI and national scientists (Dr László Holly leads the National On-Farm Conservation Project in Hungary; this work is part of Ekin Birol’s doctoral dissertation) recently completed a preliminary economic analysis of the value to farmers of home gardens in three environmentally sensitive areas. The team assessed the relative importance of five dimensions of diversity: number of crop species; presence of old varieties; mixed farms with crops and livestock; organic methods; and food self-sufficiency.

All were important, but their relative importance depended on other factors. The region of Dévaványa has good roads, is close to the centre of the country and has plenty of local food markets. The soil is good and suited to intensive agriculture. People there rated a mixed farm and organic methods the most important attributes of a home garden. Old landraces and number of species were much less important. By contrast, the region of Órség-Vendvidék is isolated with poor soils and few village food markets. Feed is costly and organic methods do not apparently work. Farmers in Órség-Vendvidék say they want high diversity of species and many older varieties in their home gardens, but do not rate mixed farms or organic methods as valuable.

Education and employment offers another view of the ideal home garden. Better educated farmers, with jobs off the farm and higher incomes, prefer a simpler home garden with fewer crops, no landraces, and no time-consuming livestock. Households with more children also prefer simpler home gardens, “perhaps,” as the report says, “because they are substituting one labour intensive activity (child rearing) with another (tending of a home garden).”

As Hungary’s economy changes its orientation the government needs to design appropriate policies that will make the most of these home gardens in the context of the European Union. Studies such as this one will feed into that process.
with poorly functioning markets, especially if the farm is only semi-commercial, dividing its production between rice to eat and rice to sell.

When agriculture is semi-subsistence, or semi-commercial, depending on your point of view, each household may well make different decisions about how much of their production to eat and how much to sell. Most landraces, for example, fetch a poor price in the market but some, such as Basmati, command a premium and can compete with modern varieties. But traders do not generally like to deal with landraces because they are often available only in smaller quantities and are of variable quality. So one policy option might be to create stronger links between growers and traders. Another might be to promote the branding of particular landraces which would protect their identity and quality.

The choices farmers make are complex. In the survey, for example, there were significant relationships between the variety combinations grown and characteristics of the household. This goes beyond the simple richer–poorer dimension and includes factors such as the number of bullocks and the self-sufficiency of the household. Thus the benefits of growing landraces vary considerably among farm households, and it may not be possible to generalize.

Yet another explanation for the choice to grow landraces is provided by the reasons the farmers themselves give. These often hinge on attributes of the variety that are not related to the yield and which are therefore not easily captured by neoclassical economics. For example, farmers themselves say that the most important reason for growing Nakhisaro is that it is adapted to poor, rain-fed soils. But this is not the prime reason for growing another variety, Sathi. This variety has religious significance in Hindu culture, and incidentally boasts much better eating quality than Nakhisaro.

In the end, having established the costs and benefits of growing traditional and modern rice varieties in Nepal, the studies concluded that economists need to use a diversity of tools to assess the value of diversity. This will be done and, it is hoped, will offer guidance to policy-makers about the best routes for influencing the on-farm conservation of crop diversity.
More than 90% of the world’s harvest of yams (*Dioscorea* species) grows in west and central Africa. The yam belt stretches from Guinea through Ghana, Togo, Benin and Nigeria down to western Cameroon, Central Africa and the Congo basin. Much of it is grown by small and medium scale farmers, and a large part of the community depends on yam for food security and income. The word yam covers a multitude of species. Cultivated yams include traditional varieties assigned to the *D. rotundata–cayenensis* complex, other indigenous species such as *D. bulbifera* and *D. dorietorum*, and introduced species such as *D. alata* and *D. esculenta*. There are also wild species, such as *D. burkilliana*, *D. abyssinica* and *D. praehensilis*, which farmers may have adopted and which may have contributed to the genetic diversity of current landraces.

Given the importance of yams to local communities and their food security, IPGRI joined the International Institute for Tropical Agriculture (IITA), another Future Harvest Centre, in a study that aimed at a better understanding of how farmers domesticate yam and what that contributes to yam improvement and production. The three-year project ended in 2002 and, as part of it, two students at the National University of Benin, Nasser Baco and Florent Okry, made anthropological studies of yam domestication the subject of their theses. This work was complemented by broader surveys and biochemical and molecular analyses carried out by other partners. The combination of techniques helped provide a deeper understanding of domestication.

Of the 80 farmers who were actively domesticating yam in the study, 78 were men, and all were the heads of their households. One reason only heads of households domesticate yams may be that it is a risky business. Yams contain toxins that have been known to kill people. Domestication consists in part of reducing the toxic load, and only when the yam is ‘safe’ are other members of the household permitted to cultivate, harvest, process and sell the new variety, which then becomes incorporated in the family’s basket of yam varieties. In general each farmer is domesticating just one kind of yam, although 14% had two and 4% three. There is no formal support for people domesticating yams. Roughly three-quarters said they had acquired the skills from their neighbours, the other quarter from relatives.

Different farmers approach the domestication of yams in different ways. For example some, but not all, place a piece of pottery beneath the roots, and offer various explanations of why this is a good thing. But almost all select from...
each harvest the tubers of the individual plants that most nearly approach their ideal of a domesticated variety and plant these the following year. The study could find no relationship between the methods used and any aspect of the outcome.

Why do they do it? Mostly to develop more productive varieties. Farmers say that cultivated yams lose vigour over time (which might be expected if they accumulate diseases), and that bringing in fresh blood from wild yams will maintain, or even increase, productivity on the farm. The farmers classify yams as wild or domesticated based on their appearance. Wild yams have thorny stems and roots and the tubers are thin. As domestication proceeds the number of thorns goes down and the tubers thicken. The farmers also gave the plants under domestication specific variety names, often the names of existing varieties. They start doing this before the domestication process is complete, and adopt the name of the variety they expected to end up with. However, individual farmers often disagreed about which variety a wild yam would produce when it had been domesticated.

Technical studies looked in detail at the morphology and genetics of the varieties, cultivated and domesticated. In one study of 68 newly domesticated yams, just under a quarter were biochemically and morphologically very similar to existing varieties. Of the rest, half were similar but not identical to some landraces, but the other half were completely different. This confirms for the first time that domestication makes a significant contribution to the genetic diversity of the yam farmers’ agricultural system.

Domesticators tend to find their yams in the savannah forest margins, with almost a fifth coming from old fields that have been abandoned to fallow.

Project partners

- International Institute for Tropical Agriculture
- Bariba, Nago and Fon farmers selected through surveys
- Université National du Bénin in collaboration with IRD (L’Institut pour le recherche pour le développement)
- Institut National des Recherches Agricoles du Bénin (INRAB)
- CIRAD-IITA Yam Research Coordination Unit (YRCU)
for a long time. Yams on the farm are generally multiplied as clones, using tubers from the previous harvest. But the species also multiplies by seed. So yams from the fallow and field margins could be either remnants of old clones or else seedlings from chance matings. The biochemical and molecular studies indicate that at least two things are going on. First, domesticators are selecting offspring of matings between cultivated varieties which, because they grow from seed, initially look very similar to wild plants. This is in effect a gradual breeding process. Secondly, they are also in rare cases selecting hybrids between wild and cultivated material. Over a number of cycles this is bringing fresh genetic diversity into the population of cultivated varieties, as newly domesticated varieties remain in fallow fields and offer further generations of seedlings for possible selection. The farmers are not aware of this long-term cycle.

Farmers do not actually appreciate that yams produce true seed and that they are using selection from true seed as a method to create and select improved clones. This offers great opportunities for improving the yam crop through participatory breeding. Already one researcher from the University of Benin has established a non-governmental organization specifically to work with farmer-breeders. In the future, one can imagine breeders making deliberate crosses of favoured cultivars in order to supply farmers with seed to assess and domesticate. Farmers, too, can be taught about true seed and encouraged to think of ways to incorporate this knowledge in their individual breeding efforts. Either way, the close study of domestication as practised by the yam farmers of Benin indicates not only the value of maintaining diversity in the areas around the farms, but also the vital part that their domestication plays in securing their food supply and improving their livelihoods.
In 10 countries across Asia IPGRI has been working with local partners to improve the conservation and use of tropical fruit species. The project is funded by the Asian Development Bank and, at roughly the three-quarters point in its life, can already point to some impressive achievements: diversity has been collected and characterized, people have been trained, techniques have been advanced, and ways found to improve the part tropical fruits can play in rural livelihoods.

Finding and collecting diversity remains a key focus of the project, which encompasses six fruits: mango, citrus, rambutan, jackfruit, litchi and mangosteen. A similar story could be told for each of them, but let us home in on mango (*Mangifera* spp.), and indeed on just some of the project’s successes with that fruit. A survey in India resulted in 36 new accessions being added to a field genebank in Bangalore. An expedition in Manipur identified mangoes that were dwarf and matured early, which could be very useful to breed improved commercial varieties. And in Bangladesh, explorers found four varieties that bear their fruits year-round and nine that bear in the off-season, again potentially valuable traits for efforts to improve mangoes.

These are just a few obvious traits. The project has sought to thoroughly characterize and evaluate diversity in the target species. More than 1300 mango accessions have now been assessed, and the information gathered is being transferred to databases for easier searching and exchange. This will ultimately make it easier for breeders and researchers to find the particular qualities they are looking for—anything from less fibrous fruits to the beautiful red rind colour and exemplary storage quality uncovered in Tai Ya, a Chinese variety.
Of course valuable diversity that is represented by the collected varieties needs to be conserved if it is to be useful to farmers and growers. In Vietnam an Italian NGO, Centro Internazionale Crocevia, has helped to establish an *in situ* conservation garden at the northern town of Son La. About 5000 rootstocks are being grafted with 12 local varieties for eventual distribution to people in the district. And while *ex situ* collections are being expanded in most countries, the detailed efforts at characterization have suggested that some of the varieties in the Vietnamese field genebank are in fact duplicates. With further testing it may be possible to rationalize the Vietnamese collections and thus improve the cost-effectiveness of their conservation.

Socioeconomic factors, such as the return on investment, consumer preferences, marketability and the like, influence the attitude of farmers and growers to tropical fruits. The project has carried out some work along these lines. For example, in Malaysia a preliminary investigation of the value of a mango species known locally as kuini (*M. odorata*) has identified the value of individual trees to farmers and estimated that the total acreage of some 700 hectares is worth about US$250 000 a year. Project partners noted in 2002 that additional socioeconomic studies, to look at all aspects of production, processing and marketing, should be carried out. These would necessarily involve collaboration with other organizations, such as UTFANET (Underutilized Tropical Fruits in Asia Network) and TFNet (International Tropical Fruits Network), and during the year the project appointed a full-time socioeconomist.

Another important goal of the project is to develop human resources and build capacity in the partners. While informal capacity building takes place in almost all exchanges, the project also conducted four formal training workshops during 2002. These ranged from the
very technical—a course on the use of molecular techniques to study and understand fruit genetic diversity—to the much more general—training on how to write scientific papers and proposals for funding. In this way the project helps national programmes to become self-sustaining in the future. Indeed the sustainability of the effort once the project has ended is an important consideration. Many of the Country Coordinators are making efforts to ensure that the activities that they have been looking after become integrated into national research and development programmes.

The project has also made plans to make use of an idea that IPGRI and its partners have promoted elsewhere, that of diversity fairs. These are gatherings at which farmers display the diversity of their crops, and are rewarded for the breadth of their varieties, rather than for the quality or yield of a particular variety. Diversity fairs at district, regional and national levels have proved an ideal mechanism for allowing farmers and growers to exchange selections and information. Researchers too can gather samples and the knowledge associated with them, perhaps with a view to diffusing varieties with desirable traits.

Further information
b.mal@cgiar.org
Selected publications

- IPGRI Annual Report 2001
- Selected Highlights of 2001
- Geneflow 2002 (English and Spanish)
- Endowing Future Harvests: the Long-term Costs of Conserving Genetic Resources at the CGIAR Centres (with SGRP and IFPRI)
- Atlas of Wild Potatoes. Systematic and Ecogeographic Studies on Crop Genepools 10 (with CIP)
- FAO/IPGRI PGR Newsletter Nos 128–131 (with FAO)
- Plant Genetic Resources Abstracts, Volume 11 (with CAB)
- Towards Sustainable National Plant Genetic Resources Programmes Policy, Planning and Coordination Issues (with DSE/ZEL)
- L’approche participative dans la recherche sur le mode de gestion des espèces cultivées localement en fonction du genre au Mali: méthodologie et techniques: cas du Mali (with FAO)
- Home Gardens and In Situ Conservation of Plant Genetic Resources in Farming Systems (with DSE/ZEL and GTZ)
- Ruby Treasure: Securing the Wealth of Pomegranate in Central Asia (in English and Russian)
- Forest Genetic Resources Conservation and Management: In Managed Natural Forests and Protected Areas (In Situ)—Vol. 2 (with FAO and DFSC)
- Programme de ressources génétiques forestières en Afrique au sud du Sahara (with SAFORGEN)
- Promoting the Conservation and Use of Plant Genetic Resources by Training and Research: Capabilities and Capacities for Plant Genetic Resources Training in Public Universities and Institutions in Eastern Africa
- FAO/IPGRI Technical Guidelines for the Safe Movement of Germplasm: Acacia spp. (No. 20) and Pinus spp. (No. 21) (with FAO)
- Report of the 4th and 5th Noble Hardwoods Network Meetings (with EUFORGEN)
- Flax Genetic Resources in Europe (with ECP/GR)
- European Collections of Vegetatively Propagated Allium (with ECP/GR)
- The Economics of Conserving Agricultural Biodiversity On-farm (with SDC, BMZ, DGIS, IDRC and IFPRI)
- IPGRI Technical Bulletins on Accession Management Trials (No. 5), Forest Tree Seed Health (No. 6) and Nematodes: In-depth Evaluation. INIBAP Technical Guidelines 6 (with SGRP and IFPRI)
- IPGRI Technical Bulletins on Accession Management Trials (No. 7, with CATIE and FAO)
- Collecting In Vitro (with the Global Musa Genomics Consortium)
- Global Evaluation of Musa Germplasm for Resistance to Fusarium Wilt, Mycosphaerella Leaf Spot Diseases, and Nematodes: In-depth Evaluation. INIBAP Technical Guidelines 6 (in English, French and Spanish)
- Oferta tecnológica de banano y plátano para América Latina y el Caribe: una contribución de MUSALAC a la investigación y desarrollo de la Musáceas
- Coconut Embryo In Vitro Culture: Part II (with COGENT)

These and other IPGRI publications are available in portable document format (PDF) from the IPGRI Web site (www.ipgri.cgiar.org/publications/indexpub.htm).

IPGRI’s projects

Support to plant genetic resources programmes and regional networks in the Americas
(Project Coordinator: Devra Jarvis)
assists countries in Latin America and the Caribbean to build up their capacities to conserve and use plant genetic resources

Support to plant genetic resources programmes and regional networks in Asia, the Pacific and Oceania (Project Coordinator: V. Ramanatha Rao)
assists countries in Asia, the Pacific and Oceania to build up their capacities to conserve and use plant genetic resources

Support to plant genetic resources programmes and regional networks in sub-Saharan Africa (Project Coordinator: Mikkel Grum)
assists countries in sub-Saharan Africa to build up their capacities to conserve and use plant genetic resources

Global capacity building and institutional support (Project Coordinator: Weber Amaral)
supports strategic research on the conservation and use of in situ diversity; it also aims to develop an information system on forest genetic resources

Promoting sustainable conservation and use of coconut genetic resources
(Project Coordinator: Pons Batugal)
promotes national, regional and global collaboration through COGENT among coconut-producing countries and partner institutions in the conservation and use of coconut genetic resources

Locating and monitoring genetic diversity
(Project Coordinator: Luigi Guarino, Prem Mathur)
develops methods for locating and measuring genetic diversity in cultivated and wild species, combining ethnobotanical with agro-ecological approaches; it also develops methods for monitoring genetic erosion

Ex situ conservation technologies and strategies
(Project Coordinator: Ehsan Dulloo)
develops improved low-input technologies for the ex situ conservation of plant genetic resources, and investigates ex situ conservation strategies

In situ conservation of crop plants and wild relatives
(Project Coordinator: Devra Jarvis)
develops a scientific basis for effective on-farm conservation that meets farmer and community needs and maintains diversity; assists national systems in locating, monitoring and maintaining viable in situ populations of wild relatives of crops

Linking conservation and use
(Project Coordinator: Toby Hodgkin)
takes ex situ, in situ and complementary approaches; emphasizes neglected and underused crops and supports the use of cocoa genetic resources
Human and policy aspects of plant genetic resources conservation and use
(Project Coordinator: Pablo Eyzaguirre)
strengthens links between conservation and the well-being of people, particularly poor rural people, emphasizing gender, nutrition, income, indigenous knowledge, traditional resource rights and participatory approaches

Information management and services
(Project Coordinator: Paul Neate)
builds capacity in information management and service provision to meet national, regional and international responsibilities; provides publications and information to support the research activities of IPGRI staff and their partners

Public awareness and impact assessment
(Project Coordinator: Ruth Raymond)
builds financial and institutional support for plant genetic resources activities worldwide by raising awareness among key target audiences of the role of these resources in sustainable development and food security; assesses IPGRI’s impact on the conservation and use of plant genetic resources

Musa genetic resources management
(Project Coordinator: Suzanne Sharrock)
collects the germplasm of Musa and its wild relatives; promotes its safe storage, movement and use; develops standardized tools for retrieving and exchanging information on Musa germplasm

Musa germplasm improvement
(Project Coordinator: Jean-Vincent Escalant)
identifies disease- and pest-resistant Musa genotypes, researches Musa pathogen diversity, screening methods and molecular genetics and develops improved Musa genotypes; provides Musa germplasm

Musa information and communication
(Project Coordinator: Claudine Picq)
supports the production, collection and exchange of information on banana and plantain; publicizes Musa issues and the work of INIBAP to scientific and non-technical audiences

Support to regional Musa programmes
(Project Coordinator: Suzanne Sharrock)
supports INIBAP’s global, regional and national networks and other partnerships in Latin America and the Caribbean, in Asia, the Pacific and Oceania, and in sub-Saharan Africa

CGIAR System-wide Genetic Resources Programme and policy support
(Project Coordinator: Jane Toll)
provides support to the CGIAR system in two areas: (1) genetic resources policy, (2) in IPGRI’s capacity as convening centre of the CGIAR’s System-wide Genetic Resources Programme (SGRP).

Unrestricted and Attributed

<table>
<thead>
<tr>
<th>Country</th>
<th>Amount (000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>238</td>
</tr>
<tr>
<td>Belgium</td>
<td>271</td>
</tr>
<tr>
<td>Canada</td>
<td>446</td>
</tr>
<tr>
<td>China</td>
<td>120</td>
</tr>
<tr>
<td>Denmark</td>
<td>527</td>
</tr>
<tr>
<td>France</td>
<td>301</td>
</tr>
<tr>
<td>Germany</td>
<td>192</td>
</tr>
<tr>
<td>India</td>
<td>75</td>
</tr>
<tr>
<td>Italy</td>
<td>1364</td>
</tr>
<tr>
<td>Japan</td>
<td>442</td>
</tr>
<tr>
<td>Korea, Republic of Mexico</td>
<td>50</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1407</td>
</tr>
<tr>
<td>Norway</td>
<td>467</td>
</tr>
<tr>
<td>Philippines</td>
<td>17</td>
</tr>
<tr>
<td>South Africa</td>
<td>50</td>
</tr>
<tr>
<td>Sweden</td>
<td>361</td>
</tr>
<tr>
<td>Switzerland</td>
<td>559</td>
</tr>
<tr>
<td>Thailand</td>
<td>8</td>
</tr>
<tr>
<td>USA</td>
<td>650</td>
</tr>
<tr>
<td>World Bank</td>
<td>2431</td>
</tr>
</tbody>
</table>

Total Grants 15,161

Restricted

<table>
<thead>
<tr>
<th>Agency</th>
<th>Amount (000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIAR</td>
<td>117</td>
</tr>
<tr>
<td>ADB</td>
<td>471</td>
</tr>
<tr>
<td>AfDB</td>
<td>53</td>
</tr>
<tr>
<td>AusAID</td>
<td>8</td>
</tr>
<tr>
<td>Belgium</td>
<td>1016</td>
</tr>
<tr>
<td>Brazil</td>
<td>16</td>
</tr>
<tr>
<td>CAPF</td>
<td>43</td>
</tr>
<tr>
<td>CAS</td>
<td>5</td>
</tr>
<tr>
<td>CATIE</td>
<td>7</td>
</tr>
<tr>
<td>CGAIAR Secretariat</td>
<td>53</td>
</tr>
<tr>
<td>CIDA</td>
<td>4</td>
</tr>
<tr>
<td>CIRAD</td>
<td>167</td>
</tr>
<tr>
<td>COL</td>
<td>14</td>
</tr>
<tr>
<td>CORAF/WECA</td>
<td>32</td>
</tr>
<tr>
<td>CTA</td>
<td>85</td>
</tr>
<tr>
<td>DADS-Malaysia</td>
<td>16</td>
</tr>
<tr>
<td>Danida</td>
<td>66</td>
</tr>
<tr>
<td>DFID</td>
<td>1079</td>
</tr>
<tr>
<td>DFSC</td>
<td>10</td>
</tr>
<tr>
<td>DSE</td>
<td>4</td>
</tr>
<tr>
<td>European Countries</td>
<td>558</td>
</tr>
<tr>
<td>European Union</td>
<td>1739</td>
</tr>
<tr>
<td>FAO</td>
<td>202</td>
</tr>
<tr>
<td>FECYT</td>
<td>14</td>
</tr>
<tr>
<td>FFTC</td>
<td>19</td>
</tr>
<tr>
<td>Finland</td>
<td>53</td>
</tr>
<tr>
<td>FONTAGRO</td>
<td>69</td>
</tr>
<tr>
<td>France</td>
<td>187</td>
</tr>
<tr>
<td>Gatsby Foundation</td>
<td>136</td>
</tr>
<tr>
<td>GTZ/EMZ</td>
<td>700</td>
</tr>
<tr>
<td>ICPE</td>
<td>10</td>
</tr>
<tr>
<td>ICRAF</td>
<td>16</td>
</tr>
<tr>
<td>IDRC</td>
<td>161</td>
</tr>
<tr>
<td>IFAD</td>
<td>445</td>
</tr>
<tr>
<td>IFPRI</td>
<td>8</td>
</tr>
<tr>
<td>IFS</td>
<td>4</td>
</tr>
<tr>
<td>IICD</td>
<td>15</td>
</tr>
<tr>
<td>ISNAR</td>
<td>3</td>
</tr>
<tr>
<td>Italy</td>
<td>106</td>
</tr>
<tr>
<td>Japan</td>
<td>428</td>
</tr>
<tr>
<td>Korea, Republic of</td>
<td>126</td>
</tr>
<tr>
<td>KUL</td>
<td>6</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>44</td>
</tr>
<tr>
<td>Mexico</td>
<td>46</td>
</tr>
<tr>
<td>Multi-donors to Genetic</td>
<td>128</td>
</tr>
<tr>
<td>Resources Policy Initiative</td>
<td></td>
</tr>
<tr>
<td>Multi-donors to Global</td>
<td>679</td>
</tr>
<tr>
<td>Conservation Trust</td>
<td></td>
</tr>
<tr>
<td>Multi-donors to World</td>
<td>167</td>
</tr>
<tr>
<td>Summit on Sustainable</td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>National Geographic Society</td>
<td>8</td>
</tr>
<tr>
<td>Netherlands</td>
<td>403</td>
</tr>
<tr>
<td>Norway</td>
<td>115</td>
</tr>
<tr>
<td>NZAID</td>
<td>85</td>
</tr>
<tr>
<td>OAS/CICAD</td>
<td>914</td>
</tr>
<tr>
<td>Peru</td>
<td>73</td>
</tr>
<tr>
<td>Pioneer</td>
<td>4</td>
</tr>
<tr>
<td>Portugal</td>
<td>11</td>
</tr>
<tr>
<td>PRGA</td>
<td>22</td>
</tr>
<tr>
<td>Quebec</td>
<td>93</td>
</tr>
<tr>
<td>Rockefeller Foundation</td>
<td>58</td>
</tr>
<tr>
<td>SDC</td>
<td>768</td>
</tr>
<tr>
<td>SIDA</td>
<td>110</td>
</tr>
<tr>
<td>Spain</td>
<td>101</td>
</tr>
<tr>
<td>SPC</td>
<td>3</td>
</tr>
<tr>
<td>Techno Nova</td>
<td>9</td>
</tr>
<tr>
<td>Uganda</td>
<td>592</td>
</tr>
<tr>
<td>UNDP-GEF</td>
<td>564</td>
</tr>
<tr>
<td>UNEP-GEF</td>
<td>225</td>
</tr>
<tr>
<td>USAID</td>
<td>340</td>
</tr>
<tr>
<td>USDA</td>
<td>46</td>
</tr>
<tr>
<td>VVOB</td>
<td>176</td>
</tr>
<tr>
<td>World Bank</td>
<td>64</td>
</tr>
<tr>
<td>Worldview Foundation</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Grants 25,148

1 France’s 2002 unrestricted contribution of Euro 287,597 at year-end rate of exchange of Euro 0.9529 = US$1.00.
2 Italy’s 2002 unrestricted contribution of Euro 1,300,000 at year-end rate of exchange of Euro 0.9529 = US$1.00.
3 The Philippines’ 2002 unrestricted contribution of PHP487,700 at year-end rate of exchange of PHP53.385 = US$1.00.
Restricted projects

<table>
<thead>
<tr>
<th>Country</th>
<th>Project Description</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIAR</td>
<td>SINGER—International Crop Information System</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Technical Support for Regional Plant Genetic Resources</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Development in the Pacific</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Associate Expert—Nematode in Vietnam</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>117</td>
</tr>
<tr>
<td>ADB</td>
<td>Conservation and Use of Native Tropical Fruit Species</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Developing Sustainable Coconut-based Income-generating Technologies in Poor Rural Communities</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>471</td>
</tr>
<tr>
<td>AfDB</td>
<td>Plant Genetic Resources in Sub-Saharan Africa</td>
<td>53</td>
</tr>
<tr>
<td>AusAID</td>
<td>Taro Genetic Resources Conservation and Utilization</td>
<td>8</td>
</tr>
<tr>
<td>Belgium</td>
<td>Collaborative Musa Research—KUL</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>INIBAP Musa Conservation Research</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>INIBAP Transit Centre—KUL</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Musa Coordinaton in Africa</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Study of Diversity (Colletotrichum and Stylosanthes) Phase II</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>1016</td>
</tr>
<tr>
<td>Brazil</td>
<td>The Lusophone project</td>
<td>16</td>
</tr>
<tr>
<td>CAPRI</td>
<td>Strengthening Community Institutions to Support the Conservation and Use of Plant Genetic Resources in Uzbekistan and Turkmenistan</td>
<td>43</td>
</tr>
<tr>
<td>CAS</td>
<td>Workshop—International Treaty on Plant Genetic Resources for Food and Agriculture</td>
<td>5</td>
</tr>
<tr>
<td>CATIE</td>
<td>Training in Black Sigatoka Management</td>
<td>7</td>
</tr>
<tr>
<td>CFC</td>
<td>Cocoa Germplasm Utilization and Conservation</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Coconut Germplasm Utilization and Conservation</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Farmer Participatory Evaluation and Dissemination of Improved Musa Germplasm</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>1032</td>
</tr>
<tr>
<td>CGIAR Secretariat</td>
<td>Human Resources Policy Initiative</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>African Evaluation Association Conference</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>53</td>
</tr>
<tr>
<td>CIDA</td>
<td>Developing Decision-making Strategies on Priorities for Conservation and Use of Forest Genetic Resources</td>
<td>4</td>
</tr>
<tr>
<td>CIRAD</td>
<td>Musa Publications</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Nematode Research</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>167</td>
</tr>
<tr>
<td>COL</td>
<td>Biodiversity and Distance Education Internship</td>
<td>14</td>
</tr>
<tr>
<td>CORAF/WECARD</td>
<td>Promoting Fonio Production in West and Central Africa through Germplasm Management and Improvement of Post Harvest Technology</td>
<td>32</td>
</tr>
<tr>
<td>CTA</td>
<td>Information Services/Publications</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Musa Germplasm Information System Training Workshop</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Training Workshop on Gender Analysis and Participatory Approaches for Sustainable Use and Conservation of Agricultural Biodiversity in Mozambique</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>85</td>
</tr>
<tr>
<td>DAGS—Malaysia</td>
<td>Cyber Plant Conservation Project</td>
<td>16</td>
</tr>
<tr>
<td>Danida</td>
<td>Danish Junior Professional Officer—Benin</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Effective Conservation and Use of Intermediate and Recalcitrant Forest Tree Seed Phase II</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>66</td>
</tr>
<tr>
<td>DFID</td>
<td>Coconut Genetic Resources</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Ex Situ Conservation Technologies and Strategies</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Farmer Testing of Banana IPM Options in East Africa</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Gender and Diversity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Human and Policy Dimensions of Genetic Resources</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>263</td>
</tr>
<tr>
<td>DFSC</td>
<td>Forest Genetic Resources Conservation and Management: in Managed Natural Forests and Protected Areas (In Situ) Guidelines</td>
<td>10</td>
</tr>
<tr>
<td>DFID</td>
<td>Home Gardens Publication</td>
<td>4</td>
</tr>
<tr>
<td>European Countries</td>
<td>ECP/GR—Phase VI</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>EUFORGEN—Phase II</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>558</td>
</tr>
<tr>
<td>European Commission</td>
<td>Biodiversity and Economics for Conservation (BioECON)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>European Plant Genetic Resources Information Infra-Structure (EPGRIS)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>European Crop Wild Relative Diversity Assessment and Conservation Forum</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Gene-Mine</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Global Forest Genetic Resources Strategies—Latin America</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Global Forest Genetic Resources Strategies—MEDA</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Locating and Monitoring Genetic Diversity—Asia</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Locating and Monitoring Genetic Diversity—MEDA</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Promoting Sustainable Conservation and Use of Coconut Genetic Resources—Asia</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Promoting Sustainable Conservation and Use of Coconut Genetic Resources—Latin America</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>133</td>
</tr>
<tr>
<td>EUFORGEN</td>
<td>Support to Plant Genetic Resources Programmes and Regional Networks in Sub-Saharan Africa—ACP</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Support to Regional Musa Programmes—Asia</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Support to Regional Musa Programmes—Latin America</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>1739</td>
</tr>
<tr>
<td>FAO</td>
<td>Adaptation of Existing Systems for the Management and Exchange of Information on Plant Genetic Resources for Food and Agriculture</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Biotechnology and Biosafety in non-EU Pre-accession Countries in Central and Eastern Europe (Balkans) and Caucasian countries</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Collecting Mission in Middle East</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Expert Consultation and Development of a List of Indicators and a Reporting Format for Monitoring the Implementation of the Global Plan of Action for the Conservation and Sustainable Use of Plant Genetic Resources</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>85</td>
</tr>
</tbody>
</table>

1 These countries supported both ECP/GR and EUFORGEN: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Lithuania, Macedonia (FYR), Malta, Netherlands, Norway, Poland, Portugal, Serbia and Montenegro, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom.

These countries supported ECP/GR: Armenia, Greece, Iceland, Romania.

Luxembourg supported EUFORGEN.
Facilitate the Implementation of the Global Plan of Action for the Conservation and Sustainable Use of Plant Genetic Resources 6
FAO/IPGRI Activities for the Review and Development of Indicators for Genetic Diversity, Genetic Erosion and Genetic Vulnerability 25
Governance paper for the Global Conservation Trust Trust In Vitro Conservation and Cryopreservation of Tropical Genetic Resources for Asia 3
Internet-based Plant Biotechnology Inventory and Further Development of a Plant Biotechnology Web Site 40
Meeting on The Evolving Role of Genebanks in the Light of Developments in Molecular Genetics National Programme Strategies and In Vitro Conservation Manual 6
Plant Genetic Resources Newsletter Workshop on ‘Agricultural Biodiversity Measurement: with a Special Focus on Sorghum and Wheat’ 28
Subtotal 202
FECYT Meeting on The Evolving Role of Genebanks in the Light of Developments in Molecular Genetics 14
FFTC Germplasm Multiplication Training Workshop 19
Finland Associate Expert—Malaysia 53
FONTAGRO Utilization of Papaya Genetic Resources for their Improvement and Promotion 69
France Acropolis Plateforme Project 9
Coconut Genetic Resources Network 30
Commodity Chains Project 50
Peri-urban Banana Production in West Africa Research on Tropical Fruit 41
The Montpellier Biotech Platform 56
Subtotal 187
Gatesby Foundation Musa Germplasm Conservation 136
GTZ/BMZ Access and Benefit Sharing: Exploring Options to Implement the International Treaty on Plant Genetic Resources for Food and Agriculture Baseline Survey on Neglected and Underutilized Crops in East and Central Africa 43
Forest Genetic Resources in Brazil and Argentina 200
Home Gardens and In Situ Conservation 3
In Situ Conservation (Morocco component) 6
In Situ Conservation (Morocco component) Phase II 227
Patterns of Genetic Diversity and Genetic Erosion of Traditional Crops in Peru 212
Subtotal 700
ICRISAT Conservation of Biodiversity of Gramineae and Arthropods 10
ICRAF Conservation and Use of the Mountain AgroBiodiversity in the East African Highlands 16
IDRC Crucible Meetings—Publications in French and Spanish In Situ Conservation of Agricultural Biodiversity Phase II Musa In Situ Conservation Promoting Traditional Seed Systems and Community Based Seed Management 13
Regional Roundtable on Contribution of Plant Genetic Resources in Africa’s Economic Renewal 10
Symposium on Managing Biodiversity 7
Subtotal 161
IFAD Enhancing the Contribution of Neglected and Underutilized Species to Food Security, and to Incomes of the Rural Poor In Situ Conservation and Utilization of Plant Genetic Resources in Desert-prone Areas of Africa Workshop—Developing Sustainable Coconut-based Income-generating Technologies as a Strategy to Promote Poverty Reduction and On-farm Conservation of Coconut Genetic Resources 20
Subtotal 445
IFPRI Impact Assessment in Uganda 8
IFS Forestry Genetic Resources Workshop 4
ICCD Collecting and Propagating Local Development Content—Indigenous Biodiversity Case Studies 15
ISNAR Evaluation of Organizational Capacity Development 3
Italy Fellowship on Molecular Tools for Enhancing the Management of Crop Diversity 6
Associate Expert—Forest Genetic Resources Research 85
Associate Expert—Socioeconomic Studies on Neglected and Underutilized Species in CWANA 15
Subtotal 106
Japan Associate Researcher—Ethnobotany 12
CGIAR Genetic Resources Support Programme Policy Research and Coordination of the System-wide Genetic Resources Programme 100
Global Forestry Genetic Resources Strategies—Research on the Genetic Resources of Bamboo Rattan 108
Global Forestry Genetic Resources Strategies—Research on the Genetic Resources of Bamboo Rattan 125
Plant Genetic Programme in Asia, the Pacific and Oceania Plant Genetic Programme in Asia, the Pacific and Oceania 80
Subtotal 428
Korea, Republic of Associate Scientist 90
Associate Scientist Research Grant 16
Medicinal Plants in 16 countries in Asia–Pacific 20
Subtotal 126
KUL ITC Musa Collection Data System 6
Luxembourg Development of National Programmes on Plant Genetic Resources in Southeastern Europe Phase II 44
Mexico Genomics Research on BSV Virus 46
Multi-donors to Genetic Resources Policy Initiative, GRPI 2
Genetic Resources Policy Initiative Expenditure 128
Associate Scientist Research Grant 16
Medicinal Plants in 16 countries in Asia–Pacific 20
Subtotal 126
National Geographic Society Emergency Expedition to Rescue Wild Peanut in Bolivia 8

2 The following provided support for the Genetic Resources Policy Initiative, GRPI: BMZ, IDRC, Netherlands, Rockefeller Foundation.
3 The following provided support for the Global Conservation Trust Campaign Phase II: Brazil, CGIAR Finance Committee, CIAT, CIFOR, CIMMYT, CIIFAP, CIAT, ICARDA, ICLARM, ICRAF, ICFR, ICRISAT, IFPRI, IITA, ILRI, IRRI, ISNAR, IWMI, SDC, USAID, WARDIA.
4 The following provided support for the Global Conservation Trust Campaign Phase II: SDC, USAID.
5 The following provided support for the World Summit on Sustainable Development: CDC, CGIAR Secretariat, IDRC, PARC.
Netherlands
Associate Expert—Forest Genetic Resources Research—Americas 70
Associate Expert—Forest Genetic Resources Research—CWANA 85
Associate Expert—Fruit and Nut Tree Complementary Conservation Strategies 59
Associate Expert—Information Management, Networking and Capacity Building in Conservation and Use of Forest Genetic Resources in Sub-Saharan Africa 53
Associate Expert—Restoration of Plant Genetic Diversity 42
In Situ Conservation in Burkina Faso and Nepal 94
Subtotal 403

Norway
Policy Unit 115
NZAID
Pacific Plant Genetic Resources 85
OAS/CICAD
Introduction of Improved Banana Varieties to Alto Beni, Bolivia 24
Organic Banana Project—Bolivia 890
Subtotal 914

Peru
Strengthening the Scientific Basis of the In Situ Conservation: Manejo y monitoreo de variedades locales de cultivos amazónicos 50
Organic Banana Project 23
Subtotal 73
Pioneer
Advisory Committee Meeting on Public Domain/Public Goods 4

Portugal
Improving Coconut Production in Mozambique through Germplasm Characterization and Evaluation of Promising Hybrids 5
The Lusophone Project 6
Subtotal 11
PRGA
Quality of Science in Participatory Plant Breeding 22

Quebec
Internship on Plant Genetic Resources Policy 11.5
Internship on Impact Assessment Uganda 11.5
Internship on Musa Germplasm Information System 11.5
Internship on Forestry Policy 6
Internship on Genetic Resources Policy Issues 10
Internship on Integrating Print and Electronic Publishing 8
Internship on Impact of IPGRI’s Work 11.5
Internship on World Summits 11.5
Internship on SINGER Crop Portal 11.5
Subtotal 93

Rockefeller
Musa Baseline Project 14
Research and Training of a PhD student 44
Subtotal 58

SDC
CGIAR—Plant Genetic Resources Policy Research Unit 118
Enhancing Contribution of Home Gardens to On-farm Management of Plant Genetic Resources and to Improve Livelihoods of Nepalese Farmers 66
In Situ Conservation of Agricultural Biodiversity Phase III 526
Legal Research on Traditional Intellectual Property to Plant Genetic Resources 16
SINGER Gateway Model 42
Subtotal 768

SIDA
Genetic Resources Policy 82
Regional Roundtable on Contribution of Plant Genetic Resources in Africa’s Economic Renewal 14
Advisory Committee Meeting on Public Domain/Public Goods 14
Subtotal 110

Spain
Cherimoya Germplasm Bank in Peru 20
In Situ Conservation in Peru 11
Technology Transfer Project (Musa) 26
Training Programme 44
Subtotal 101

SPC
Taro Genetic Resources Conservation and Utilization 3

Technovia
Research on Sweet Potato 9

Uganda
Musa Biotechnology for Uganda Project 592

UNDP-GEF
Participatory Management of Date Palm Plant Genetic Resources in Oases of the Maghreb 564

UNEP-GEF
Community-based Management of On-farm Plant Genetic Resources in Arid and Semi-arid Areas of Sub-Saharan Africa 204
In Situ Conservation of Crop Wild Relatives through Enhanced Information Management and Field Application 15
In Situ/On Farm Conservation of Agricultural Biodiversity (Horticultural Crops and Wild Relatives Species) in Central Asia 6
Subtotal 225

USAID
Empirical Studies with IFPRI 14
Meeting on ‘The Evolving Role of Genebanks in the Light of Developments in Molecular Genetics’ 10
Support to FHIA Breeding Programme 75
Target Project—Increasing Productivity and Market Opportunities for Banana in Africa 241
Subtotal 340

USDA
Collection of Germplasm in Bolivia and Guyana 8
Collection of Germplasm of Phaseolus spp. and Arachis hypogaea L. in Venezuela 22
Development/Testing of Geographical Information System for Locating Cultivated Plant Diversity 6
Documentation and Management of Plant Genetic Resources in Developing Countries 3
In Situ Conservation of Wild Crop Relatives in Paraguay 7
Subtotal 46

VVOB
Associate Scientist—Nematology in Costa Rica 60
Associate Scientist—Technology Transfer in Uganda 60
Associate Scientist—Nematology in Cameroon 59
Subtotal 179

World Bank
CGIAR Genetic Resources Policy Committee 55
Germplasm Conservation in Central Asia and the Caucasus 9
Subtotal 64

World View Foundation
Temuan Tribe Indigenous Local Community (Orang Asli) Working Together to Conserve and Sustainably Use their Environment via Sustainable Livelihoods 7

Total Restricted Grants 15 161
OFFICE OF DIRECTOR GENERAL
HAWTIN, Dr Geoffrey Director General
FOWLER, Dr Cary Honorary Research Fellow, Senior Advisor
MALGRAND, Ms Karine Fund Raising Assistant
WATANABE, Dr Kazuo Honorary Research Fellow
WATTS, Ms Jamie Impact Assessment and Evaluation Specialist
WITHERS, Dr Lyndsey Assistant Director General

SECRETARIAT OF THE CGIAR SYSTEM-WIDEGENETIC RESOURCES PROGRAMME
TOLL, Ms Jane Senior Scientist, SGRP Coordinator
DAOUD, Ms Layla Communications and Information Assistant
GAJJI, Mr Samy Senior Scientist, SINGER Project Leader
SKOFIC, Mr Milko Database and Programmer Analyst

OFFICE OF DEPUTY DIRECTOR GENERAL, PROGRAMMES
HOOGENDOORN, Dr Coosje Deputy Director General, Programmes
THOMPSON, Dr Judith Scientific Assistant

DOCUMENTATION, INFORMATION AND TRAINING GROUP
GOLDBERG, Ms Elizabeth Group Director
ALERCIA, Ms Adriana Germplasm Information Specialist
BUONAIUTO, Mr Massimo* Multimedia/Web Specialist
CHERFAS, Dr Jeremy Science Writer
CISSOKHO, Ms Pascale** Multimedia/Web Specialist
DAW, Ms Jennie Editor
GARRUCCIO, Ms Maria Library and Information Services Specialist
METZ, Dr Thomas Senior Scientist, Genetic Resources Information Systems Management
NEATE, Mr Paul Senior Scientist, Head, Communications Services
RAYMOND, Ms Ruth Senior Scientist, Public Awareness
SOOD, Mr Rajesh* Database Developer/Information System Analyst
TAZZA, Ms Patrizia Design and Layout Specialist

GENETIC RESOURCES SCIENCE AND TECHNOLOGY GROUP
ENGELS, Dr Jan Group Director
AMARAL, Dr Weber Forest Genetic Resources Coordinator, Senior Scientist
BORDONI, Mr A. Paul* Scientific Assistant, Underutilized Species
BRAGDON, Ms Susan Senior Scientist, Law and Policy
BROWN, Dr Tony Honorary Research Fellow, Genetic Diversity

DULLOO, Dr M. Ehsan* Scientist, Conservation and Management of Germplasm Collections
ENGELMANN, Dr Florent Honorary Research Fellow
EYZAGUIRRE, Dr Pablo Senior Scientist, Anthropology and Socioeconomics
GUARINO, Mr Luigi* Honorary Research Fellow
HANSON, Dr Jean* Senior Advisor, Ex Situ Conservation
HALEWOOD, Mr Michael Legal Specialist
HODGKIN, Dr Toby Principal Scientist, Genetic Diversity
JARVIS, Dr Devra Senior Scientist, In Situ Conservation of Agricultural Biodiversity
JOHNS, Prof. Timothy* Honorary Research Fellow
MOORE, Dr Gerald Honorary Research Fellow, Law and Policy
SAKALIAN, Dr Marieta** Consultant, In Situ Conservation of Crop Wild Relatives
SMALE, Dr Melinda Senior Economist
THORMANN, Ms Imke Scientific Assistant, Plant Genetic Resources Information Management
VINCETI, Ms Barbara* Associate Scientist, Forest Genetic Resources

FINANCE AND ADMINISTRATION
GEERTS, Mr Koen Director Finance and Administration
COUMBES, Mr Mark Budget/Audit Officer
HARMANN, Ms Karen Senior Accountant
LUZON, Ms Josephine Finance Manager
PAPINI, Ms Silvia Office Manager
RASMUSSON, Ms Lotta Human Resources Manager
VALORI, Mr Dario Information Technology Manager

SUB-SAHARAN AFRICA
ATT-AKRAH, Dr Kwesi Regional Director
DULLOO, Dr M. Ehsan*** Germplasm Conservation Scientist
GRUM, Dr Mikkel Scientist, Genetic Diversity
KAMAU, Mr Henry Scientist, Training/SADC Programme
KIAMBI, Dr Dionysius K. Scientist, East Africa Programme
MAUNDU, Mr Patrick Scientist, Ethnobotany
MORIMOTO, Ms Yasuyuki Associate Scientist, Cucurbitaceae Documentation and Information Officer
MUKEMA, Mr Isaiah Associate Scientist, In Situ Conservation
MUKEMA, Mr Isaiah Associate Scientist, In Situ Conservation
NDUNG’U-SKILTON, Ms Julia Associate Scientist, In Situ Conservation
OBARA, Ms Anne
Administrative Officer
Scientific Assistant
Germplasm Conservation
Scientist
Associate Scientist, Restoration of Plant Genetic Diversity
Senior Scientist, Training Officer

West and Central Africa
VODOUHE, Dr S. Raymond
Scientist/Coordinator, Genetic Diversity
DOSSOU, Dr Bernadette
Associate Scientist, In Situ Conservation (Burkina Faso)
EYOG-MATIG, Dr Oscar
Scientist/Coordinator SAFORGEN
GAOUE, Mr Orou Gander**
Scientific Assistant, SAFORGEN
SANGARE, Dr Abdourahamane**
Honorary Research Fellow, Training

AMERICAS
LASTRA, Dr Ramón
Regional Director
AZURDIA, Dr Cesar**
Honorary Research Fellow, Plant Genetic Resources
BAENA, Ms Margarita
Publications and Public Awareness Specialist
CHAVEZ, Dr Jose Luis
Conservation Specialist, In Situ Crop Genetic Resources
COPPENS, Dr Geo
Scientist, Plant Molecular Genetics
FRANCO, Mr Tito
Documentation and Information Programme Specialist
GUARINO, Mr Luigi**
Senior Scientist, Genetic Diversity
JARVIS, Dr Andrew*
Honorary Research Fellow, Geographic Information System
MORALES, Dr Francisco**
Germplasm Health Specialist
OCAMPO, Mr John Albero
Visiting Researcher, *Passiflora*
SCHELDEMAN, Dr Xavier*
Senior Scientist, Conservation and Use of Neotropical PGR
VAN BREUGEL, Mr Paulo**
Associate Scientist, Forest Genetics Resources
WILLIAMS, Dr David E.
Senior Scientist, Genetic Diversity

ASIA, PACIFIC AND OCEANIA
SAJISE, Dr Percy
Regional Director
BATUGAL, Dr Pons A.
Senior Scientist, COGENT Coordinator
CHIN, Prof. H.F.
Honorary Research Fellow, Public Awareness Specialist, Bamboo and Rattan and Forest Genetic Resources
HONG, Mr Lay Thong
Associate Scientist, Forest Genetics Resources Conservation and Use

CENTRAL AND WEST ASIA AND NORTH AFRICA
AYAD, Dr George
Regional Director
BAMMOUN, Ms Aicha
In Situ Conservation of Agricultural Biodiversity—National Professional Officer
BARI, Mr Abdullah
Associate Scientist, PGR Information/Data Management and Analysis Methodologies
BAZUIN, Mr Tom
Associate Scientist, Forestry Genetic Resources
DURAH, Dr Kheder
Regional Network and Information Manager
KHALIL, Mr Rami
Public Awareness Officer
GIULIANI, Ms Alessandra*
Associate Scientist, Socioeconomics of Neglected and Underutilized Crops
HADJ HASSAN, Dr Adnan
Honorary Research Fellow
LEE, Ms Marina*
Research Assistant to the Regional Specialist on Community Conservation of PGR
MAMELLY, Mr Adib
Finance and Administration Officer
NASR, Dr Noureddine*
Regional Coordinator, GEF-UNDP-Date Palm
PADULOSI, Dr Stefano
Senior Scientist, Integrated Conservation Methodologies and Use

EAST ASIA
ZHOU, Prof. Mingde
Senior Scientist, East Asia Coordinator
ZHANG, Mr Zongwen
Associate Scientist, East Asia Associate Coordinator

SOUTH ASIA
BHAG MAL, Dr
Senior Scientist, South Asia Coordinator
ARORA, Dr R.K.
Honorary Research Fellow, Associate Scientist, South Asia Associate Coordinator
RAMAMANI, Ms Y.S.
Scientific Officer (Tropical Fruits)
SURENDRAKUMAR,
Mr Veluthattil

ASIA, PACIFIC AND OCEANIA
MOHAMED, Hj. Azhari
Consultant
QUEK, Dr Paul
Scientist, Documentation/Information
RAO, Dr V. Ramanatha
Senior Scientist, Genetic Diversity/Conservation
STHAPIT, Dr Bhuvon Ratna
Scientist, In Situ Crop Conservation Specialist
WELLER, Mr Michael
Administrative Officer
YOUNG-JIN, Dr Kim
Associate Scientist, Citrus Cryopreservation

CENTRAL AND WEST ASIA AND NORTH AFRICA
AYAD, Dr George
Regional Director
BAMMOUN, Ms Aicha
In Situ Conservation of Agricultural Biodiversity—National Professional Officer
BARI, Mr Abdullah
Associate Scientist, PGR Information/Data Management and Analysis Methodologies
BAZUIN, Mr Tom
Associate Scientist, Forestry Genetic Resources
DURAH, Dr Kheder
Regional Network and Information Manager
KHALIL, Mr Rami
Public Awareness Officer
GIULIANI, Ms Alessandra*
Associate Scientist, Socioeconomics of Neglected and Underutilized Crops
HADJ HASSAN, Dr Adnan
Honorary Research Fellow
LEE, Ms Marina*
Research Assistant to the Regional Specialist on Community Conservation of PGR
MAMELLY, Mr Adib
Finance and Administration Officer
NASR, Dr Noureddine*
Regional Coordinator, GEF-UNDP-Date Palm
PADULOSI, Dr Stefano
Senior Scientist, Integrated Conservation Methodologies and Use
<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Role</th>
<th>Region</th>
<th>Function/Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENKEMA, Ms Heidi*</td>
<td>Associate Scientist, Fruit and Nut Tree Complementary Conservation Strategies</td>
<td>Eastern and Southen Africa</td>
<td>Regional Coordinator</td>
</tr>
<tr>
<td>SHUMAN, Mr Firas*</td>
<td>Consultant/Research Assistant/Underutilized-Neglected Species</td>
<td>West and Central Africa</td>
<td>Associate Scientist, Assistant to Regional Coordinator</td>
</tr>
<tr>
<td>TRESHKIN, Dr Sergey*</td>
<td>Regional Specialist on Community Conservation of Plant Genetic Resources</td>
<td>Latin America and Caribbean</td>
<td>Regional Coordinator</td>
</tr>
<tr>
<td>TURDIEVA, Dr Muhabbat</td>
<td>Scientist, Forestry Genetic Resources, Central Asia and the Caucasus</td>
<td>INIBAP Transit Centre</td>
<td>Scientist, Germplasm Conservation</td>
</tr>
<tr>
<td>ZIRARI, Mr Abdelmalek*</td>
<td>National Coordinator, GEF-UNDEP-Date Palm Project, Morocco</td>
<td>INIBAP Transit Centre</td>
<td>Honorary Research Fellow, Musa Genetic Improvement</td>
</tr>
<tr>
<td>EUROPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUROPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUROK, Dr Jozef</td>
<td>Regional Director/EUFORGEN Coordinator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LALIBERTÉ, Ms Brigitte</td>
<td>Scientific Assistant, Crop Genetic Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPMAN, Ms Elinor</td>
<td>Scientific Assistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGGIONI, Mr Lorenzo</td>
<td>Scientist, ECP/GR Coordinator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERNATIONAL NETWORK FOR THE IMPROVEMENT OF BANANA AND PLANTAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRISON, Dr Emile A.G.</td>
<td>Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARNAUD, Ms Elizabeth</td>
<td>Information/Documentation Specialist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOCO, Ms Hélène</td>
<td>Information/Communication Specialist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCALANT, Dr Jean-Vincent</td>
<td>Senior Scientist, Musa Genetic Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESKES, Dr Bertus</td>
<td>Coordinator CFC/ICCO/IPGRI Cocoa Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPMAN, Ms Elinor</td>
<td>Scientific Assistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUSTY, Ms Charlotte</td>
<td>Public Awareness and Impact Assessment Specialist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCAMPO, Mr John Albero</td>
<td>Visiting Researcher, Passiflora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMONT, Mr Hubert**</td>
<td>Senior Scientist, Commodity Chains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICQ, Ms Claudine</td>
<td>Head, Information/Communication Specialist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PONSIOEN, Mr Guido</td>
<td>Information/Documentation Specialist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHARROCK, Ms Suzanne</td>
<td>Senior Scientist, Germplasm Conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THORNTON, Mr Tom</td>
<td>Financial Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEZINA, Ms Anne*</td>
<td>Editor/Scientific Writer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VILARINHOS, Mr Alberto Duarte</td>
<td>Associate Scientist, Molecular Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia and Pacific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLINA, Dr Agustín</td>
<td>Regional Coordinator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN DEN BERGH, Dr Inge</td>
<td>Visiting Associate Scientist, Technology Transfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Joined during 2002
** Left during 2002
*** Moved groups during 2002
BOARD CHAIR
Dr Marcio de Miranda Santos
(to March 2002)**
CIGE-Centro de Estudos de Gestão Estratégica
Ministério da Ciência e Tecnologia-MCT
SPO-Area 05 Quadra 03
Bloco A Sala 133
70.610–200 Brasilia-DF
Brazil

MEMBERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Carlos Cano*</td>
<td>Ministro de Agricultura Av. Jimenez #7-65</td>
</tr>
<tr>
<td></td>
<td>Bogota, Colombia</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Cottier</td>
<td>Institute of European and International Economic Law</td>
</tr>
<tr>
<td></td>
<td>Hallestrasse 6/9, CH-3012 Berne Switzerland</td>
</tr>
<tr>
<td>Dr Anthony Gregson*</td>
<td>Oakview East PO Box 197 Warracknabeal Victoria 3393</td>
</tr>
<tr>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Dr. Geoffrey Hawtin</td>
<td>Director General, IPGRI Via dei Tre Denari 472/a</td>
</tr>
<tr>
<td></td>
<td>00057 Maccarese, Rome Italy</td>
</tr>
<tr>
<td>Dr Marianne Lefort</td>
<td>Head of Plant Breeding Dept INRA - DGAP</td>
</tr>
<tr>
<td></td>
<td>RD 10 (Route de Saint Cyr) 78026 Versailles Cedex</td>
</tr>
<tr>
<td></td>
<td>France</td>
</tr>
<tr>
<td>Dr Olga F. Linares*</td>
<td>Smithsonian Tropical Research Institute Unit 0948</td>
</tr>
<tr>
<td></td>
<td>Balboa, Panama</td>
</tr>
<tr>
<td>Dr Shoji Miyazaki*</td>
<td>Director, Genebank, NIAS 2-1-2 Kannondai Tsukuba</td>
</tr>
<tr>
<td></td>
<td>305-8602 Japan</td>
</tr>
<tr>
<td>Prof. Luigi Monti</td>
<td>Istituto di Agronomia Generale e Coltivazione Erbacee Cattedra di Genetica Agraria</td>
</tr>
<tr>
<td></td>
<td>Università di Napoli</td>
</tr>
<tr>
<td>Dr Benchaphun Shinawatra Ekasingh (from March 2002)</td>
<td>Chiang Mai University Multiple Cropping Centre Faculty of Agriculture Chiang Mai 50200</td>
</tr>
<tr>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr Masahiro Nakagahra**</td>
<td>Vice Director General STAFF Institute</td>
</tr>
<tr>
<td></td>
<td>446–1 Ippaizuka Kamiyokoba, Tsukuba Japan</td>
</tr>
<tr>
<td>Dr Gene Namkoong (deceased)</td>
<td>PO Box 763 Leicester, NC 28748 USA</td>
</tr>
<tr>
<td>Prof. Ivan Nielsen</td>
<td>Department of Systematic Botany University of Århus Nordsandvej 68 8240 Risskov Denmark</td>
</tr>
<tr>
<td>Dr René Salazar</td>
<td>c/o SEARICE, 331 Eagle Court Condominium</td>
</tr>
<tr>
<td></td>
<td>26 Matlino St, Quezon City Philippines</td>
</tr>
<tr>
<td>Dr Theresa Sengooba</td>
<td>Namulenge Agricultural and Animal Production Research Institute PO Box 7084 Kampala Uganda</td>
</tr>
<tr>
<td>Dr Benchaphun Shinawatra Ekasingh</td>
<td>Chiang Mai University Multiple Cropping Centre Faculty of Agriculture Chiang Mai 50002</td>
</tr>
<tr>
<td></td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr Stephen Smith*</td>
<td>Pioneer Hi-Bred International 7300 NW 62nd Ave 1004 Johnstown, Iowa 50131 USA</td>
</tr>
<tr>
<td>Dr Mahmoud Solih*</td>
<td>Director Plant Production and Protection Division FAO</td>
</tr>
<tr>
<td></td>
<td>Viale delle Terme di Caracalla 00100 Rome Italy</td>
</tr>
<tr>
<td>Dr Florence Wambugu</td>
<td>AHBFI Mimosa Vale Nairobi 25556 Kenya</td>
</tr>
</tbody>
</table>

Credits

Text: Jeremy Cherfas
Editor: Jennie Drew
Design: Patrizia Tazza
Layout: Frances Ferraiuolo
Printing: Marchesi Grafiche Editoriali Roma

Cover illustration

Our cover shows a painting ‘Tropical Home Garden’ 24x24 inches acrylic on canvas, by John Dyer, resident artist for the Eden Project. © John Dyer.

Right: John Dyer at work.
The International Plant Genetic Resources Institute (IPGRI) is an international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI's headquarters are in Maccareses near Rome, Italy, with offices in another 22 countries worldwide. It operates through three programmes:

- Plant Genetic Resources
- CGIAR Genetic Resources Support
- the International Network for the Improvement of Banana and Plantain (INIBAP).

Citation:
ISBN 92-9043-591-7

IPGRI, Via dei Tre Denari 472/a, 00057 Maccareses, Rome, Italy

© International Plant Genetic Resources Institute, 2003